Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308422219> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4308422219 endingPage "105582" @default.
- W4308422219 startingPage "105582" @default.
- W4308422219 abstract "Most Remaining Useful Life (RUL) prognostics are obtained using supervised learning models trained with many labelled data samples (i.e., the true RUL is known). In aviation, however, aircraft systems are often preventively replaced before failure. There are thus very few labelled data samples available. We therefore propose a Long Short-Term Memory (LSTM) autoencoder with attention to develop health indicators for an aircraft system instead. This autoencoder is trained with unlabelled data samples (i.e., the true RUL is unknown). Since aircraft fly under various operating conditions (varying altitude, speed, etc.), these conditions are also integrated in the autoencoder. We show that the consideration of the operating conditions leads to robust health indicators and improves significantly the monotonicity, trendability and prognosability of these indicators. These health indicators are further used to predict the RUL of the aircraft system using a similarity-based matching approach. We illustrate our approach for turbofan engines. We show that the consideration of the operating conditions improves the monotonicity of the health indicators by 97%. Also, our approach leads to accurate RUL estimates with a Root Mean Square Error (RMSE) of 2.67 flights only. Moreover, a 19% reduction in the RMSE is obtained using our approach in comparison to existing supervised learning models. • Unsupervised learning to create health indicators for systems with few failures. • LSTM autoencoder with attention to create health indicators. • LSTM autoencoder includes the operating conditions of the system. • Approach is applied to the aircraft engines (the new N-CMAPSS). • Accurate RUL prognostics with only one failure instance in the training set." @default.
- W4308422219 created "2022-11-11" @default.
- W4308422219 creator A5051179928 @default.
- W4308422219 creator A5061668006 @default.
- W4308422219 date "2023-01-01" @default.
- W4308422219 modified "2023-10-12" @default.
- W4308422219 title "Developing health indicators and RUL prognostics for systems with few failure instances and varying operating conditions using a LSTM autoencoder" @default.
- W4308422219 cites W2064675550 @default.
- W4308422219 cites W2136848157 @default.
- W4308422219 cites W2773549135 @default.
- W4308422219 cites W2944676531 @default.
- W4308422219 cites W2991419351 @default.
- W4308422219 cites W2997825250 @default.
- W4308422219 cites W3009075394 @default.
- W4308422219 cites W3011803685 @default.
- W4308422219 cites W3020467718 @default.
- W4308422219 cites W3022112205 @default.
- W4308422219 cites W3065337412 @default.
- W4308422219 cites W3083956363 @default.
- W4308422219 cites W3119743098 @default.
- W4308422219 cites W3133798627 @default.
- W4308422219 cites W3141188857 @default.
- W4308422219 cites W3160411383 @default.
- W4308422219 cites W3196608054 @default.
- W4308422219 cites W4200433233 @default.
- W4308422219 cites W4210516747 @default.
- W4308422219 cites W4280605288 @default.
- W4308422219 cites W4283798331 @default.
- W4308422219 cites W4293382584 @default.
- W4308422219 doi "https://doi.org/10.1016/j.engappai.2022.105582" @default.
- W4308422219 hasPublicationYear "2023" @default.
- W4308422219 type Work @default.
- W4308422219 citedByCount "12" @default.
- W4308422219 countsByYear W43084222192022 @default.
- W4308422219 countsByYear W43084222192023 @default.
- W4308422219 crossrefType "journal-article" @default.
- W4308422219 hasAuthorship W4308422219A5051179928 @default.
- W4308422219 hasAuthorship W4308422219A5061668006 @default.
- W4308422219 hasBestOaLocation W43084222191 @default.
- W4308422219 hasConcept C101738243 @default.
- W4308422219 hasConcept C119857082 @default.
- W4308422219 hasConcept C124101348 @default.
- W4308422219 hasConcept C127413603 @default.
- W4308422219 hasConcept C129364497 @default.
- W4308422219 hasConcept C154945302 @default.
- W4308422219 hasConcept C200601418 @default.
- W4308422219 hasConcept C41008148 @default.
- W4308422219 hasConcept C50644808 @default.
- W4308422219 hasConceptScore W4308422219C101738243 @default.
- W4308422219 hasConceptScore W4308422219C119857082 @default.
- W4308422219 hasConceptScore W4308422219C124101348 @default.
- W4308422219 hasConceptScore W4308422219C127413603 @default.
- W4308422219 hasConceptScore W4308422219C129364497 @default.
- W4308422219 hasConceptScore W4308422219C154945302 @default.
- W4308422219 hasConceptScore W4308422219C200601418 @default.
- W4308422219 hasConceptScore W4308422219C41008148 @default.
- W4308422219 hasConceptScore W4308422219C50644808 @default.
- W4308422219 hasLocation W43084222191 @default.
- W4308422219 hasLocation W43084222192 @default.
- W4308422219 hasLocation W43084222193 @default.
- W4308422219 hasOpenAccess W4308422219 @default.
- W4308422219 hasPrimaryLocation W43084222191 @default.
- W4308422219 hasRelatedWork W2788487394 @default.
- W4308422219 hasRelatedWork W2922457425 @default.
- W4308422219 hasRelatedWork W2989980351 @default.
- W4308422219 hasRelatedWork W3002526821 @default.
- W4308422219 hasRelatedWork W3044458868 @default.
- W4308422219 hasRelatedWork W4213225422 @default.
- W4308422219 hasRelatedWork W4220810357 @default.
- W4308422219 hasRelatedWork W4250304930 @default.
- W4308422219 hasRelatedWork W4285815650 @default.
- W4308422219 hasRelatedWork W4289656111 @default.
- W4308422219 hasVolume "117" @default.
- W4308422219 isParatext "false" @default.
- W4308422219 isRetracted "false" @default.
- W4308422219 workType "article" @default.