Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308431913> ?p ?o ?g. }
- W4308431913 endingPage "e0276436" @default.
- W4308431913 startingPage "e0276436" @default.
- W4308431913 abstract "In the field of surface electromyography (sEMG) gesture recognition, how to improve recognition accuracy has been a research hotspot. The rapid development of deep learning provides a new solution to this problem. At present, the main applications of deep learning for sEMG gesture feature extraction are based on convolutional neural network (CNN) structures to capture spatial morphological information of the multichannel sEMG or based on long short-term memory network (LSTM) to extract time-dependent information of the single-channel sEMG. However, there are few methods to comprehensively consider the distribution area of the sEMG signal acquisition electrode sensor and the arrangement of the sEMG signal morphological features and electrode spatial features. In this paper, a novel multi-stream feature fusion network (MSFF-Net) model is proposed for sEMG gesture recognition. The model adopts a divide-and-conquer strategy to learn the relationship between different muscle regions and specific gestures. Firstly, a multi-stream convolutional neural network (Multi-stream CNN) and a convolutional block attention module integrated with a resblock (ResCBAM) are used to extract multi-dimensional spatial features from signal morphology, electrode space, and feature map space. Then the learned multi-view depth features are fused by a view aggregation network consisting of an early fusion network and a late fusion network. The results of all subjects and gesture movement validation experiments in the sEMG signal acquired from 12 sensors provided by NinaPro's DB2 and DB4 sub-databases show that the proposed model in this paper has better performance in terms of gesture recognition accuracy compared with the existing models." @default.
- W4308431913 created "2022-11-11" @default.
- W4308431913 creator A5041660329 @default.
- W4308431913 creator A5042657271 @default.
- W4308431913 creator A5061399269 @default.
- W4308431913 creator A5068908694 @default.
- W4308431913 creator A5084010516 @default.
- W4308431913 date "2022-11-07" @default.
- W4308431913 modified "2023-09-27" @default.
- W4308431913 title "MSFF-Net: Multi-Stream Feature Fusion Network for surface electromyography gesture recognition" @default.
- W4308431913 cites W2041345816 @default.
- W4308431913 cites W2169931829 @default.
- W4308431913 cites W2555541061 @default.
- W4308431913 cites W2589747988 @default.
- W4308431913 cites W2762706434 @default.
- W4308431913 cites W2807631444 @default.
- W4308431913 cites W2884585870 @default.
- W4308431913 cites W2886903801 @default.
- W4308431913 cites W2898716605 @default.
- W4308431913 cites W2903418501 @default.
- W4308431913 cites W2912302853 @default.
- W4308431913 cites W2922138935 @default.
- W4308431913 cites W2922758829 @default.
- W4308431913 cites W2923078152 @default.
- W4308431913 cites W2935727652 @default.
- W4308431913 cites W2977057839 @default.
- W4308431913 cites W2996887859 @default.
- W4308431913 cites W3004392413 @default.
- W4308431913 cites W3012896577 @default.
- W4308431913 cites W3029000947 @default.
- W4308431913 cites W3035709993 @default.
- W4308431913 cites W3069945016 @default.
- W4308431913 cites W3082709963 @default.
- W4308431913 cites W3084684600 @default.
- W4308431913 cites W3101667008 @default.
- W4308431913 cites W3124201954 @default.
- W4308431913 cites W3126426351 @default.
- W4308431913 cites W3133817630 @default.
- W4308431913 cites W3139200204 @default.
- W4308431913 cites W3151522062 @default.
- W4308431913 cites W3183648003 @default.
- W4308431913 cites W3193838982 @default.
- W4308431913 cites W3196638878 @default.
- W4308431913 cites W3205417461 @default.
- W4308431913 doi "https://doi.org/10.1371/journal.pone.0276436" @default.
- W4308431913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36342906" @default.
- W4308431913 hasPublicationYear "2022" @default.
- W4308431913 type Work @default.
- W4308431913 citedByCount "0" @default.
- W4308431913 crossrefType "journal-article" @default.
- W4308431913 hasAuthorship W4308431913A5041660329 @default.
- W4308431913 hasAuthorship W4308431913A5042657271 @default.
- W4308431913 hasAuthorship W4308431913A5061399269 @default.
- W4308431913 hasAuthorship W4308431913A5068908694 @default.
- W4308431913 hasAuthorship W4308431913A5084010516 @default.
- W4308431913 hasBestOaLocation W43084319131 @default.
- W4308431913 hasConcept C108583219 @default.
- W4308431913 hasConcept C138885662 @default.
- W4308431913 hasConcept C153180895 @default.
- W4308431913 hasConcept C154945302 @default.
- W4308431913 hasConcept C159437735 @default.
- W4308431913 hasConcept C207347870 @default.
- W4308431913 hasConcept C2776401178 @default.
- W4308431913 hasConcept C28490314 @default.
- W4308431913 hasConcept C31972630 @default.
- W4308431913 hasConcept C41008148 @default.
- W4308431913 hasConcept C41895202 @default.
- W4308431913 hasConcept C52622490 @default.
- W4308431913 hasConcept C81363708 @default.
- W4308431913 hasConcept C83665646 @default.
- W4308431913 hasConceptScore W4308431913C108583219 @default.
- W4308431913 hasConceptScore W4308431913C138885662 @default.
- W4308431913 hasConceptScore W4308431913C153180895 @default.
- W4308431913 hasConceptScore W4308431913C154945302 @default.
- W4308431913 hasConceptScore W4308431913C159437735 @default.
- W4308431913 hasConceptScore W4308431913C207347870 @default.
- W4308431913 hasConceptScore W4308431913C2776401178 @default.
- W4308431913 hasConceptScore W4308431913C28490314 @default.
- W4308431913 hasConceptScore W4308431913C31972630 @default.
- W4308431913 hasConceptScore W4308431913C41008148 @default.
- W4308431913 hasConceptScore W4308431913C41895202 @default.
- W4308431913 hasConceptScore W4308431913C52622490 @default.
- W4308431913 hasConceptScore W4308431913C81363708 @default.
- W4308431913 hasConceptScore W4308431913C83665646 @default.
- W4308431913 hasFunder F4320322665 @default.
- W4308431913 hasIssue "11" @default.
- W4308431913 hasLocation W43084319131 @default.
- W4308431913 hasLocation W43084319132 @default.
- W4308431913 hasLocation W43084319133 @default.
- W4308431913 hasLocation W43084319134 @default.
- W4308431913 hasOpenAccess W4308431913 @default.
- W4308431913 hasPrimaryLocation W43084319131 @default.
- W4308431913 hasRelatedWork W2279398222 @default.
- W4308431913 hasRelatedWork W2367741884 @default.
- W4308431913 hasRelatedWork W2388078516 @default.
- W4308431913 hasRelatedWork W2546942002 @default.
- W4308431913 hasRelatedWork W2772780115 @default.
- W4308431913 hasRelatedWork W2903018492 @default.