Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308432098> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4308432098 endingPage "1249" @default.
- W4308432098 startingPage "1249" @default.
- W4308432098 abstract "<ns4:p><ns4:bold>Background: </ns4:bold>Finding well-known <ns4:italic>Beauveria bassiana</ns4:italic> isolates that could preserve rice crops from <ns4:italic>Sesamia calamistis</ns4:italic> (stem borer) is problematic. Another difficult task is the development of precise inoculation methods, which have been employed for their establishment as endophytes in cereal crops. This study proposed machine learning models to predict the best entomopathogenic fungi, <ns4:italic>Beauveria bassiana</ns4:italic> that could directly protect rice crops against <ns4:italic>Sesamia calamistis</ns4:italic>.</ns4:p><ns4:p> <ns4:bold>Methods:</ns4:bold> Data driven machine learning decisions were implemented and assessed from 60 experimental runs with nine different feature/input variables and three target/output variables following foliar spray and seed treatment inoculation method. The feature variables consisted of rice plant tissue, such as Nerica-L19, Nerica1, Nerica8, the time, and the five promising isolates <ns4:italic>Beauveria bassiana </ns4:italic>(Bb3, Bb4, Bb10, Bb21, Bb35). The target variable consisted of the number of colonised roots, stems and leaves, expressed as a percentage depending on the degree of protection after each inoculation. A data driven decision by the extreme gradient boosting regression algorithm was used to proficiently abstract the situation where there is no direct relationship between features and target variables.</ns4:p><ns4:p> <ns4:bold>Results:</ns4:bold> The foliar spray inoculation method exhibited high coefficient of determination (<ns4:italic>R<ns4:sup>2</ns4:sup></ns4:italic>) of 0.99, 0.98 and 0.94 depending on the number of colonised stems, roots and leaves, respectively, while the seed treatment approach exhibited the coefficient of determination (<ns4:italic>R<ns4:sup>2</ns4:sup></ns4:italic>) of 0.91, 0.87 and 0.75, respectively.</ns4:p><ns4:p> <ns4:bold>Conclusions: </ns4:bold>These results demonstrated that the Extreme Gradient Boosting algorithm effectively abstracted the nonlinear relationship between the attribute variables that were taken into consideration and predicted <ns4:italic>Beauveria bassiana </ns4:italic>as a bio-pesticide for rice and perhaps other cereal stem borers. Thus, this XGBoost regression model could be used to navigate the optimization domain and reduce the development time of the biocontrol process.</ns4:p>" @default.
- W4308432098 created "2022-11-11" @default.
- W4308432098 creator A5033494049 @default.
- W4308432098 creator A5068485763 @default.
- W4308432098 creator A5076628269 @default.
- W4308432098 date "2022-11-03" @default.
- W4308432098 modified "2023-10-18" @default.
- W4308432098 title "Machine learning model to predict endophytic colonisation of rice cultivar plant tissues by Beauveria bassiana isolates and their potential as bio-control agents against rice stem borer using existing knowledge" @default.
- W4308432098 cites W1597584572 @default.
- W4308432098 cites W1678356000 @default.
- W4308432098 cites W1976596942 @default.
- W4308432098 cites W1984168249 @default.
- W4308432098 cites W2002649350 @default.
- W4308432098 cites W2104109644 @default.
- W4308432098 cites W2115472805 @default.
- W4308432098 cites W2147203478 @default.
- W4308432098 cites W2149591630 @default.
- W4308432098 cites W2156544038 @default.
- W4308432098 cites W2156756878 @default.
- W4308432098 cites W2157109729 @default.
- W4308432098 cites W2432932943 @default.
- W4308432098 cites W2473156356 @default.
- W4308432098 cites W2620411720 @default.
- W4308432098 cites W2790979755 @default.
- W4308432098 cites W2799738465 @default.
- W4308432098 cites W2971349717 @default.
- W4308432098 cites W2997329433 @default.
- W4308432098 cites W3010606844 @default.
- W4308432098 cites W3013609576 @default.
- W4308432098 cites W3109438736 @default.
- W4308432098 cites W3129405633 @default.
- W4308432098 cites W3150635270 @default.
- W4308432098 cites W4248713682 @default.
- W4308432098 doi "https://doi.org/10.12688/f1000research.126479.1" @default.
- W4308432098 hasPublicationYear "2022" @default.
- W4308432098 type Work @default.
- W4308432098 citedByCount "0" @default.
- W4308432098 crossrefType "journal-article" @default.
- W4308432098 hasAuthorship W4308432098A5033494049 @default.
- W4308432098 hasAuthorship W4308432098A5068485763 @default.
- W4308432098 hasAuthorship W4308432098A5076628269 @default.
- W4308432098 hasBestOaLocation W43084320981 @default.
- W4308432098 hasConcept C104727253 @default.
- W4308432098 hasConcept C2781391353 @default.
- W4308432098 hasConcept C59822182 @default.
- W4308432098 hasConcept C86803240 @default.
- W4308432098 hasConceptScore W4308432098C104727253 @default.
- W4308432098 hasConceptScore W4308432098C2781391353 @default.
- W4308432098 hasConceptScore W4308432098C59822182 @default.
- W4308432098 hasConceptScore W4308432098C86803240 @default.
- W4308432098 hasLocation W43084320981 @default.
- W4308432098 hasOpenAccess W4308432098 @default.
- W4308432098 hasPrimaryLocation W43084320981 @default.
- W4308432098 hasRelatedWork W1502734782 @default.
- W4308432098 hasRelatedWork W2082860237 @default.
- W4308432098 hasRelatedWork W2347619484 @default.
- W4308432098 hasRelatedWork W2350599350 @default.
- W4308432098 hasRelatedWork W2365437703 @default.
- W4308432098 hasRelatedWork W2371809050 @default.
- W4308432098 hasRelatedWork W2374908708 @default.
- W4308432098 hasRelatedWork W2380341438 @default.
- W4308432098 hasRelatedWork W3153950087 @default.
- W4308432098 hasRelatedWork W986867659 @default.
- W4308432098 hasVolume "11" @default.
- W4308432098 isParatext "false" @default.
- W4308432098 isRetracted "false" @default.
- W4308432098 workType "article" @default.