Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308432890> ?p ?o ?g. }
- W4308432890 endingPage "605" @default.
- W4308432890 startingPage "596" @default.
- W4308432890 abstract "Improving the flame retardancy of polymeric materials used in engineering applications is an increasingly important strategy for limiting fire hazards. However, the wide variety of flame retardant polymeric nanocomposite compositions prevents quick identification of the optimal design for a specific application. In this study, we built a flame retardancy database of more than 800 polymeric nanocomposites, including information from polymer flammability, thermal stability, and nanofiller properties. Then, we applied five machine learning algorithms to predict the flame retardancy index for different types of flame retardant polymeric nanocomposites. Among them, extreme gradient boosting regression gives the best prediction with a coefficient of determination (R2) of 0.94 and a root-mean-square error of 0.17. In addition, we studied how the physical features of polymeric nanocomposites affected flame retardancy using the correlation matrix and feature importance plot, which in turn was used to guide the design of polymeric nanocomposites for flame retardant applications. Following the guidelines, a high-performance flame retardant polymeric nanocomposite was designed and synthesized, and the experimental FRI result was compared with the machine learning prediction (6% prediction error). This result demonstrated a fast identification of flame retardancy of polymeric nanocomposite without large-scale fire tests, which could accelerate the design of functional polymeric nanocomposites in the flame retardant field." @default.
- W4308432890 created "2022-11-11" @default.
- W4308432890 creator A5001899071 @default.
- W4308432890 creator A5008648649 @default.
- W4308432890 creator A5026699023 @default.
- W4308432890 creator A5027558966 @default.
- W4308432890 creator A5044707487 @default.
- W4308432890 date "2022-11-07" @default.
- W4308432890 modified "2023-10-07" @default.
- W4308432890 title "Accelerated Design of Flame Retardant Polymeric Nanocomposites via Machine Learning Prediction" @default.
- W4308432890 cites W1678356000 @default.
- W4308432890 cites W1687437680 @default.
- W4308432890 cites W2085011616 @default.
- W4308432890 cites W2089362136 @default.
- W4308432890 cites W2098727135 @default.
- W4308432890 cites W2119821739 @default.
- W4308432890 cites W2161610462 @default.
- W4308432890 cites W2209855430 @default.
- W4308432890 cites W2347129741 @default.
- W4308432890 cites W2487770199 @default.
- W4308432890 cites W2566312613 @default.
- W4308432890 cites W2787894218 @default.
- W4308432890 cites W2884258597 @default.
- W4308432890 cites W2911964244 @default.
- W4308432890 cites W2917305253 @default.
- W4308432890 cites W2942958057 @default.
- W4308432890 cites W2953267190 @default.
- W4308432890 cites W2957077005 @default.
- W4308432890 cites W2962812708 @default.
- W4308432890 cites W2979809658 @default.
- W4308432890 cites W2983857621 @default.
- W4308432890 cites W2984182530 @default.
- W4308432890 cites W3017268465 @default.
- W4308432890 cites W3027150786 @default.
- W4308432890 cites W3036776898 @default.
- W4308432890 cites W3043592821 @default.
- W4308432890 cites W3046557562 @default.
- W4308432890 cites W3047184465 @default.
- W4308432890 cites W3093932484 @default.
- W4308432890 cites W3102476541 @default.
- W4308432890 cites W3125542198 @default.
- W4308432890 cites W3126009555 @default.
- W4308432890 cites W3128904763 @default.
- W4308432890 cites W3143460494 @default.
- W4308432890 cites W3161989387 @default.
- W4308432890 cites W3174539335 @default.
- W4308432890 cites W3192804826 @default.
- W4308432890 cites W3215641074 @default.
- W4308432890 cites W4200119453 @default.
- W4308432890 cites W4205678267 @default.
- W4308432890 cites W4206612978 @default.
- W4308432890 cites W4220917172 @default.
- W4308432890 cites W4221111122 @default.
- W4308432890 cites W4238530616 @default.
- W4308432890 cites W4280491109 @default.
- W4308432890 cites W4280637929 @default.
- W4308432890 cites W4296770811 @default.
- W4308432890 doi "https://doi.org/10.1021/acsaenm.2c00145" @default.
- W4308432890 hasPublicationYear "2022" @default.
- W4308432890 type Work @default.
- W4308432890 citedByCount "8" @default.
- W4308432890 countsByYear W43084328902022 @default.
- W4308432890 countsByYear W43084328902023 @default.
- W4308432890 crossrefType "journal-article" @default.
- W4308432890 hasAuthorship W4308432890A5001899071 @default.
- W4308432890 hasAuthorship W4308432890A5008648649 @default.
- W4308432890 hasAuthorship W4308432890A5026699023 @default.
- W4308432890 hasAuthorship W4308432890A5027558966 @default.
- W4308432890 hasAuthorship W4308432890A5044707487 @default.
- W4308432890 hasConcept C105923489 @default.
- W4308432890 hasConcept C127413603 @default.
- W4308432890 hasConcept C158550234 @default.
- W4308432890 hasConcept C159985019 @default.
- W4308432890 hasConcept C178790620 @default.
- W4308432890 hasConcept C185592680 @default.
- W4308432890 hasConcept C192562407 @default.
- W4308432890 hasConcept C205474432 @default.
- W4308432890 hasConcept C2777325870 @default.
- W4308432890 hasConcept C2779970684 @default.
- W4308432890 hasConcept C2781465349 @default.
- W4308432890 hasConcept C2987912017 @default.
- W4308432890 hasConcept C42360764 @default.
- W4308432890 hasConcept C59061564 @default.
- W4308432890 hasConcept C92880739 @default.
- W4308432890 hasConceptScore W4308432890C105923489 @default.
- W4308432890 hasConceptScore W4308432890C127413603 @default.
- W4308432890 hasConceptScore W4308432890C158550234 @default.
- W4308432890 hasConceptScore W4308432890C159985019 @default.
- W4308432890 hasConceptScore W4308432890C178790620 @default.
- W4308432890 hasConceptScore W4308432890C185592680 @default.
- W4308432890 hasConceptScore W4308432890C192562407 @default.
- W4308432890 hasConceptScore W4308432890C205474432 @default.
- W4308432890 hasConceptScore W4308432890C2777325870 @default.
- W4308432890 hasConceptScore W4308432890C2779970684 @default.
- W4308432890 hasConceptScore W4308432890C2781465349 @default.
- W4308432890 hasConceptScore W4308432890C2987912017 @default.
- W4308432890 hasConceptScore W4308432890C42360764 @default.
- W4308432890 hasConceptScore W4308432890C59061564 @default.