Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308439884> ?p ?o ?g. }
- W4308439884 endingPage "2195" @default.
- W4308439884 startingPage "2195" @default.
- W4308439884 abstract "Nanotechnology is a burning field of scientific interest for researchers in current era. Diverse plant materials are considered as potential tool in green chemistry based technologies for the synthesis of metal nanoparticles (NPs) to cope with the hazardous effects of synthetic chemicals, leading to severe abiotic climate change issues in today's agriculture. This study aimed to determine the synthesis and characterization of metal-based nanoparticles using extracts of the selected plant Calotropis gigantea and to evaluate the enzyme-inhibition activities and antibacterial and antifungal activity of extracts of metal-based zinc nanoparticles using C. gigantea extracts. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). C. gigantea was examined for antimicrobial activity against clinical isolates of bacteria and fungi. The water, ethanolic, and acetone extracts of C. gigantea were studied for their antagonistic action against bacterial strains (E. coli, S. aureus, P. multocida, and B. subtilis) and selected fungal strains (A. paracistic, F. solani, A. niger, S. ferrugenium, and R. nigricans). In vitro antimicrobial activity was determined by the disc diffusion method, where C. gigantea wastested for AChE and BChE inhibitory activity using Ellman's methodology. The kinetic analysis was performed by the proverbial Berthelot reaction for urease inhibition. The results showed that out of all the extracts tested, ethanolic and water extracts possessed zinc nanoparticles. These extracts showed the maximum zone of inhibition against F. solani and P. multocida and the lowest against S. ferrugenium and B. subtilis. A potential source of AChE inhibitors is certainly provided by the abundance of plants in nature. Numerous phyto-constituents, such as AChE and BChE inhibitors, have been reported in this communication. Water extract was active and has the potential for in vitro AChE and BChE inhibitory activity. The urease inhibition with flower extracts of C. gigantea revealed zinc nanoparticles in water extracts that competitively inhibited urease enzymes. In the case of cholinesterase enzymes, it was inferred that the water extract and zinc nanoparticles have more potential for inhibition of BChE than AChE and urease inhibition. Furthermore, zinc nanoparticles with water extract are active inthe inhibition of the bacterial strains E. coli, S. aureus, and P. multocida and the fungal strains A. paracistic, F. solani, and A. niger." @default.
- W4308439884 created "2022-11-11" @default.
- W4308439884 creator A5014984754 @default.
- W4308439884 creator A5023829688 @default.
- W4308439884 creator A5025068778 @default.
- W4308439884 creator A5033509562 @default.
- W4308439884 creator A5036138533 @default.
- W4308439884 creator A5036529720 @default.
- W4308439884 creator A5040123863 @default.
- W4308439884 creator A5041855177 @default.
- W4308439884 creator A5060947928 @default.
- W4308439884 creator A5067535351 @default.
- W4308439884 creator A5080499426 @default.
- W4308439884 creator A5082368965 @default.
- W4308439884 creator A5091441635 @default.
- W4308439884 creator A5031247494 @default.
- W4308439884 date "2022-11-04" @default.
- W4308439884 modified "2023-10-01" @default.
- W4308439884 title "Green Chemistry Based Synthesis of Zinc Oxide Nanoparticles Using Plant Derivatives of Calotropis gigantea (Giant Milkweed) and Its Biological Applications against Various Bacterial and Fungal Pathogens" @default.
- W4308439884 cites W1031071957 @default.
- W4308439884 cites W168722964 @default.
- W4308439884 cites W1943178046 @default.
- W4308439884 cites W1967239960 @default.
- W4308439884 cites W1971048984 @default.
- W4308439884 cites W1971103102 @default.
- W4308439884 cites W1973872321 @default.
- W4308439884 cites W1974886613 @default.
- W4308439884 cites W1982564131 @default.
- W4308439884 cites W1985036117 @default.
- W4308439884 cites W1987218271 @default.
- W4308439884 cites W1987366095 @default.
- W4308439884 cites W1992098811 @default.
- W4308439884 cites W1995671262 @default.
- W4308439884 cites W1997774370 @default.
- W4308439884 cites W1999364829 @default.
- W4308439884 cites W2018033820 @default.
- W4308439884 cites W2029996692 @default.
- W4308439884 cites W2031366087 @default.
- W4308439884 cites W2033069724 @default.
- W4308439884 cites W2042817260 @default.
- W4308439884 cites W2055004828 @default.
- W4308439884 cites W2060288971 @default.
- W4308439884 cites W2065325998 @default.
- W4308439884 cites W2068521345 @default.
- W4308439884 cites W2070938379 @default.
- W4308439884 cites W2090927218 @default.
- W4308439884 cites W2117466354 @default.
- W4308439884 cites W2142832124 @default.
- W4308439884 cites W2152644477 @default.
- W4308439884 cites W2164958242 @default.
- W4308439884 cites W2167422568 @default.
- W4308439884 cites W2171696941 @default.
- W4308439884 cites W2181302271 @default.
- W4308439884 cites W218181274 @default.
- W4308439884 cites W2246996774 @default.
- W4308439884 cites W2294787662 @default.
- W4308439884 cites W2325246967 @default.
- W4308439884 cites W2328875619 @default.
- W4308439884 cites W2559584153 @default.
- W4308439884 cites W257342135 @default.
- W4308439884 cites W2602332165 @default.
- W4308439884 cites W2607638441 @default.
- W4308439884 cites W2730862189 @default.
- W4308439884 cites W2766452806 @default.
- W4308439884 cites W2911766284 @default.
- W4308439884 cites W2946594898 @default.
- W4308439884 cites W2977794867 @default.
- W4308439884 cites W3036780924 @default.
- W4308439884 cites W4220993458 @default.
- W4308439884 cites W768535257 @default.
- W4308439884 doi "https://doi.org/10.3390/microorganisms10112195" @default.
- W4308439884 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36363787" @default.
- W4308439884 hasPublicationYear "2022" @default.
- W4308439884 type Work @default.
- W4308439884 citedByCount "6" @default.
- W4308439884 countsByYear W43084398842023 @default.
- W4308439884 crossrefType "journal-article" @default.
- W4308439884 hasAuthorship W4308439884A5014984754 @default.
- W4308439884 hasAuthorship W4308439884A5023829688 @default.
- W4308439884 hasAuthorship W4308439884A5025068778 @default.
- W4308439884 hasAuthorship W4308439884A5031247494 @default.
- W4308439884 hasAuthorship W4308439884A5033509562 @default.
- W4308439884 hasAuthorship W4308439884A5036138533 @default.
- W4308439884 hasAuthorship W4308439884A5036529720 @default.
- W4308439884 hasAuthorship W4308439884A5040123863 @default.
- W4308439884 hasAuthorship W4308439884A5041855177 @default.
- W4308439884 hasAuthorship W4308439884A5060947928 @default.
- W4308439884 hasAuthorship W4308439884A5067535351 @default.
- W4308439884 hasAuthorship W4308439884A5080499426 @default.
- W4308439884 hasAuthorship W4308439884A5082368965 @default.
- W4308439884 hasAuthorship W4308439884A5091441635 @default.
- W4308439884 hasBestOaLocation W43084398841 @default.
- W4308439884 hasConcept C11636898 @default.
- W4308439884 hasConcept C13965031 @default.
- W4308439884 hasConcept C178790620 @default.
- W4308439884 hasConcept C185592680 @default.
- W4308439884 hasConcept C2777272437 @default.
- W4308439884 hasConcept C2780104969 @default.