Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308442023> ?p ?o ?g. }
- W4308442023 endingPage "5576" @default.
- W4308442023 startingPage "5576" @default.
- W4308442023 abstract "We present new advances in monitoring particulate matter (PM) in urban areas within a participatory vehicle sensor network (VSN) that exploits the use of multiple mobile low-cost IoT devices. These devices send geolocated PM measurements to an IT infrastructure and enabled us to reconstruct, in real time, the spatial and temporal distribution of pollutants in the study area in a web-based environment. The newly acquired data were integrated with independent reference measurements available from governmental environmental agencies. We deployed the infrastructure in the city of Trieste (Italy), since the beginning of 2021, with the help of several volunteers and the local transportation authority (Trieste Trasporti). By analysing the data, we delineate areas with lower air quality and identify the possible causes of these anomalies. We were able to define a belt outside the urban center where an enhanced concentration of pollutants occurs due to a higher flux of vehicular traffic that tends to jam there. Overall, our results demonstrate that this approach can be helpful in supporting urban planning and can also stimulate the community to reflect on how they can improve air quality in the area they live by reducing the use of private cars in favour of more widespread public transportation usage." @default.
- W4308442023 created "2022-11-11" @default.
- W4308442023 creator A5007111861 @default.
- W4308442023 creator A5013292309 @default.
- W4308442023 creator A5031074101 @default.
- W4308442023 creator A5033171145 @default.
- W4308442023 creator A5039495637 @default.
- W4308442023 creator A5045370047 @default.
- W4308442023 creator A5078277353 @default.
- W4308442023 date "2022-11-04" @default.
- W4308442023 modified "2023-10-14" @default.
- W4308442023 title "Monitoring Air Quality in Urban Areas Using a Vehicle Sensor Network (VSN) Crowdsensing Paradigm" @default.
- W4308442023 cites W1987172718 @default.
- W4308442023 cites W2006557206 @default.
- W4308442023 cites W2019705125 @default.
- W4308442023 cites W2025368483 @default.
- W4308442023 cites W2032101051 @default.
- W4308442023 cites W2037539542 @default.
- W4308442023 cites W2046078465 @default.
- W4308442023 cites W2058499045 @default.
- W4308442023 cites W2064127932 @default.
- W4308442023 cites W2125826911 @default.
- W4308442023 cites W2130082585 @default.
- W4308442023 cites W2153409008 @default.
- W4308442023 cites W2153707811 @default.
- W4308442023 cites W2177836626 @default.
- W4308442023 cites W2190345096 @default.
- W4308442023 cites W2515048595 @default.
- W4308442023 cites W2525470824 @default.
- W4308442023 cites W2727275208 @default.
- W4308442023 cites W2731171009 @default.
- W4308442023 cites W2781043268 @default.
- W4308442023 cites W2914248435 @default.
- W4308442023 cites W2915523226 @default.
- W4308442023 cites W2975798903 @default.
- W4308442023 cites W2980595542 @default.
- W4308442023 cites W3015082165 @default.
- W4308442023 cites W3017269091 @default.
- W4308442023 cites W3081948973 @default.
- W4308442023 cites W3090047783 @default.
- W4308442023 cites W3095843329 @default.
- W4308442023 cites W3135721140 @default.
- W4308442023 cites W3140773563 @default.
- W4308442023 cites W3148301347 @default.
- W4308442023 cites W3152876831 @default.
- W4308442023 cites W3155833717 @default.
- W4308442023 cites W3184749295 @default.
- W4308442023 cites W3201040782 @default.
- W4308442023 cites W3205534926 @default.
- W4308442023 cites W4214543651 @default.
- W4308442023 cites W4223435110 @default.
- W4308442023 cites W4245529266 @default.
- W4308442023 cites W4284893627 @default.
- W4308442023 cites W4285593253 @default.
- W4308442023 cites W4293231014 @default.
- W4308442023 cites W4294904593 @default.
- W4308442023 cites W4298621161 @default.
- W4308442023 cites W4306362146 @default.
- W4308442023 doi "https://doi.org/10.3390/rs14215576" @default.
- W4308442023 hasPublicationYear "2022" @default.
- W4308442023 type Work @default.
- W4308442023 citedByCount "9" @default.
- W4308442023 countsByYear W43084420232022 @default.
- W4308442023 countsByYear W43084420232023 @default.
- W4308442023 crossrefType "journal-article" @default.
- W4308442023 hasAuthorship W4308442023A5007111861 @default.
- W4308442023 hasAuthorship W4308442023A5013292309 @default.
- W4308442023 hasAuthorship W4308442023A5031074101 @default.
- W4308442023 hasAuthorship W4308442023A5033171145 @default.
- W4308442023 hasAuthorship W4308442023A5039495637 @default.
- W4308442023 hasAuthorship W4308442023A5045370047 @default.
- W4308442023 hasAuthorship W4308442023A5078277353 @default.
- W4308442023 hasBestOaLocation W43084420231 @default.
- W4308442023 hasConcept C111472728 @default.
- W4308442023 hasConcept C126314574 @default.
- W4308442023 hasConcept C127413603 @default.
- W4308442023 hasConcept C138885662 @default.
- W4308442023 hasConcept C153294291 @default.
- W4308442023 hasConcept C165696696 @default.
- W4308442023 hasConcept C197352329 @default.
- W4308442023 hasConcept C205649164 @default.
- W4308442023 hasConcept C22212356 @default.
- W4308442023 hasConcept C24590314 @default.
- W4308442023 hasConcept C2522767166 @default.
- W4308442023 hasConcept C2779208394 @default.
- W4308442023 hasConcept C2779530757 @default.
- W4308442023 hasConcept C31258907 @default.
- W4308442023 hasConcept C38652104 @default.
- W4308442023 hasConcept C39432304 @default.
- W4308442023 hasConcept C41008148 @default.
- W4308442023 hasConcept C59822182 @default.
- W4308442023 hasConcept C86803240 @default.
- W4308442023 hasConceptScore W4308442023C111472728 @default.
- W4308442023 hasConceptScore W4308442023C126314574 @default.
- W4308442023 hasConceptScore W4308442023C127413603 @default.
- W4308442023 hasConceptScore W4308442023C138885662 @default.
- W4308442023 hasConceptScore W4308442023C153294291 @default.
- W4308442023 hasConceptScore W4308442023C165696696 @default.