Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308442024> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4308442024 endingPage "11195" @default.
- W4308442024 startingPage "11195" @default.
- W4308442024 abstract "Event prediction is a knowledge inference problem that predicts the consequences or effects of an event based on existing information. Early work on event prediction typically modeled the event context to predict what would happen next. Moreover, the predicted outcome was often singular. These studies had difficulty coping with both the problems of predicting sudden events in unknown contexts and predicting outcomes consisting of multiple events. To address these two problems better, we present the heterogeneous graph event prediction model (HGEP), which is based on an event knowledge graph. To cope with the situation of missing contexts, we propose a representation learning method based on the heterogeneous graph transformer. We generate event scenario representations from arguments of the initial event and other related concurrent events for the event prediction. We improve the prediction ability of the HGEP model through prior knowledge provided by scenario models in the event knowledge graph. To obtain multiple prediction outcomes, we design a scoring function to calculate the score of the occurrence probability of each event class. The event classes with scores higher than a priori values are adopted as prediction outcomes. In this paper, we create an event knowledge graph in the domain of transportation for an event prediction experiment. The experimental results show that the HGEP model can effectively make predictions with event scenario representations and has a more accurate matching rate and higher precision than the baseline model." @default.
- W4308442024 created "2022-11-11" @default.
- W4308442024 creator A5058722514 @default.
- W4308442024 creator A5071037763 @default.
- W4308442024 date "2022-11-04" @default.
- W4308442024 modified "2023-10-14" @default.
- W4308442024 title "Sudden Event Prediction Based on Event Knowledge Graph" @default.
- W4308442024 cites W1780225521 @default.
- W4308442024 cites W1991018417 @default.
- W4308442024 cites W1999529874 @default.
- W4308442024 cites W2092495914 @default.
- W4308442024 cites W2137502531 @default.
- W4308442024 cites W2159924615 @default.
- W4308442024 cites W2184957013 @default.
- W4308442024 cites W2246338463 @default.
- W4308442024 cites W2250342289 @default.
- W4308442024 cites W2257051837 @default.
- W4308442024 cites W2283196293 @default.
- W4308442024 cites W2758362814 @default.
- W4308442024 cites W2792328488 @default.
- W4308442024 cites W2964080504 @default.
- W4308442024 cites W3012871709 @default.
- W4308442024 cites W3036836886 @default.
- W4308442024 cites W3080203535 @default.
- W4308442024 cites W3115594531 @default.
- W4308442024 cites W3116132308 @default.
- W4308442024 cites W3169782436 @default.
- W4308442024 cites W3172263342 @default.
- W4308442024 cites W3196873519 @default.
- W4308442024 cites W3197259738 @default.
- W4308442024 cites W3214637114 @default.
- W4308442024 cites W4293547730 @default.
- W4308442024 cites W2251674747 @default.
- W4308442024 doi "https://doi.org/10.3390/app122111195" @default.
- W4308442024 hasPublicationYear "2022" @default.
- W4308442024 type Work @default.
- W4308442024 citedByCount "0" @default.
- W4308442024 crossrefType "journal-article" @default.
- W4308442024 hasAuthorship W4308442024A5058722514 @default.
- W4308442024 hasAuthorship W4308442024A5071037763 @default.
- W4308442024 hasBestOaLocation W43084420241 @default.
- W4308442024 hasConcept C119857082 @default.
- W4308442024 hasConcept C121332964 @default.
- W4308442024 hasConcept C124101348 @default.
- W4308442024 hasConcept C132525143 @default.
- W4308442024 hasConcept C154945302 @default.
- W4308442024 hasConcept C2776214188 @default.
- W4308442024 hasConcept C2779662365 @default.
- W4308442024 hasConcept C41008148 @default.
- W4308442024 hasConcept C62520636 @default.
- W4308442024 hasConcept C80444323 @default.
- W4308442024 hasConceptScore W4308442024C119857082 @default.
- W4308442024 hasConceptScore W4308442024C121332964 @default.
- W4308442024 hasConceptScore W4308442024C124101348 @default.
- W4308442024 hasConceptScore W4308442024C132525143 @default.
- W4308442024 hasConceptScore W4308442024C154945302 @default.
- W4308442024 hasConceptScore W4308442024C2776214188 @default.
- W4308442024 hasConceptScore W4308442024C2779662365 @default.
- W4308442024 hasConceptScore W4308442024C41008148 @default.
- W4308442024 hasConceptScore W4308442024C62520636 @default.
- W4308442024 hasConceptScore W4308442024C80444323 @default.
- W4308442024 hasIssue "21" @default.
- W4308442024 hasLocation W43084420241 @default.
- W4308442024 hasOpenAccess W4308442024 @default.
- W4308442024 hasPrimaryLocation W43084420241 @default.
- W4308442024 hasRelatedWork W2961085424 @default.
- W4308442024 hasRelatedWork W3046775127 @default.
- W4308442024 hasRelatedWork W3170094116 @default.
- W4308442024 hasRelatedWork W4205958290 @default.
- W4308442024 hasRelatedWork W4285260836 @default.
- W4308442024 hasRelatedWork W4286629047 @default.
- W4308442024 hasRelatedWork W4306321456 @default.
- W4308442024 hasRelatedWork W4306674287 @default.
- W4308442024 hasRelatedWork W4386462264 @default.
- W4308442024 hasRelatedWork W4224009465 @default.
- W4308442024 hasVolume "12" @default.
- W4308442024 isParatext "false" @default.
- W4308442024 isRetracted "false" @default.
- W4308442024 workType "article" @default.