Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308444225> ?p ?o ?g. }
- W4308444225 endingPage "2324" @default.
- W4308444225 startingPage "2324" @default.
- W4308444225 abstract "The conventional method for determining the Marshall Stability (MS) and Marshall Flow (MF) of asphalt pavements entails laborious, time-consuming, and expensive laboratory procedures. In order to develop new and advanced prediction models for MS and MF of asphalt pavements the current study applied three soft computing techniques: Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Multi Expression Programming (MEP). A comprehensive database of 343 data points was established for both MS and MF. The nine most significant and straightforwardly determinable geotechnical factors were chosen as the predictor variables. The root squared error (RSE), Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE), root mean square error (RMSE), relative root mean square error (RRMSE), coefficient of determination (R2), and correlation coefficient (R), were all used to evaluate the performance of models. The sensitivity analysis (SA) revealed the rising order of input significance of MS and MF. The results of parametric analysis (PA) were also found to be consistent with previous research findings. The findings of the comparison showed that ANN, ANFIS, and MEP are all reliable and effective methods for the estimation of MS and MF. The mathematical expressions derived from MEP represent the novelty of MEP and are relatively reliable and simple. Roverall values for MS and MF were in the order of MEP > ANFIS > ANN with all values over the permissible range of 0.80 for both MS and MF. Therefore, all the techniques showed higher performance, possessed high prediction and generalization capabilities, and assessed the relative significance of input parameters in the prediction of MS and MF. In terms of training, testing, and validation data sets and their closeness to the ideal fit, i.e., the slope of 1:1, MEP models outperformed the other two models. The findings of this study will contribute to the choice of an appropriate artificial intelligence strategy to quickly and precisely estimate the Marshall Parameters. Hence, the findings of this research study would assist in safer, faster, and more sustainable predictions of MS and MF, from the standpoint of time and resources required to perform the Marshall tests." @default.
- W4308444225 created "2022-11-11" @default.
- W4308444225 creator A5004968882 @default.
- W4308444225 creator A5006732540 @default.
- W4308444225 creator A5021660485 @default.
- W4308444225 creator A5024856343 @default.
- W4308444225 creator A5031377667 @default.
- W4308444225 creator A5034710733 @default.
- W4308444225 creator A5041859607 @default.
- W4308444225 date "2022-11-05" @default.
- W4308444225 modified "2023-10-10" @default.
- W4308444225 title "Prediction of Marshall Stability and Marshall Flow of Asphalt Pavements Using Supervised Machine Learning Algorithms" @default.
- W4308444225 cites W1944468554 @default.
- W4308444225 cites W1964394164 @default.
- W4308444225 cites W1968289563 @default.
- W4308444225 cites W1969246162 @default.
- W4308444225 cites W1970384904 @default.
- W4308444225 cites W1974831047 @default.
- W4308444225 cites W1983621648 @default.
- W4308444225 cites W1986991372 @default.
- W4308444225 cites W1995341919 @default.
- W4308444225 cites W1996750440 @default.
- W4308444225 cites W2009085104 @default.
- W4308444225 cites W2011580004 @default.
- W4308444225 cites W2014997186 @default.
- W4308444225 cites W2016436201 @default.
- W4308444225 cites W2017634795 @default.
- W4308444225 cites W2019207321 @default.
- W4308444225 cites W2022695033 @default.
- W4308444225 cites W2034957637 @default.
- W4308444225 cites W2053090389 @default.
- W4308444225 cites W2057652484 @default.
- W4308444225 cites W2065600284 @default.
- W4308444225 cites W2068406500 @default.
- W4308444225 cites W2077053944 @default.
- W4308444225 cites W2078827635 @default.
- W4308444225 cites W2084681289 @default.
- W4308444225 cites W2094749864 @default.
- W4308444225 cites W2096185550 @default.
- W4308444225 cites W2099115946 @default.
- W4308444225 cites W2099447846 @default.
- W4308444225 cites W2105489270 @default.
- W4308444225 cites W2111825008 @default.
- W4308444225 cites W2153086765 @default.
- W4308444225 cites W2161329384 @default.
- W4308444225 cites W2280221537 @default.
- W4308444225 cites W2327498690 @default.
- W4308444225 cites W2346297907 @default.
- W4308444225 cites W2439281291 @default.
- W4308444225 cites W2469127753 @default.
- W4308444225 cites W2469903943 @default.
- W4308444225 cites W2545011432 @default.
- W4308444225 cites W2610090978 @default.
- W4308444225 cites W2672479775 @default.
- W4308444225 cites W2742582396 @default.
- W4308444225 cites W2743012292 @default.
- W4308444225 cites W2763196246 @default.
- W4308444225 cites W2791136957 @default.
- W4308444225 cites W2804755586 @default.
- W4308444225 cites W2902098804 @default.
- W4308444225 cites W2903152670 @default.
- W4308444225 cites W2908310583 @default.
- W4308444225 cites W2909793142 @default.
- W4308444225 cites W2922494806 @default.
- W4308444225 cites W2923370583 @default.
- W4308444225 cites W2923815186 @default.
- W4308444225 cites W2946047805 @default.
- W4308444225 cites W2946148730 @default.
- W4308444225 cites W2956787875 @default.
- W4308444225 cites W2957606078 @default.
- W4308444225 cites W2965383324 @default.
- W4308444225 cites W2970262866 @default.
- W4308444225 cites W2976039593 @default.
- W4308444225 cites W2980539464 @default.
- W4308444225 cites W2996991292 @default.
- W4308444225 cites W2997078190 @default.
- W4308444225 cites W3001457794 @default.
- W4308444225 cites W3009067252 @default.
- W4308444225 cites W3015444992 @default.
- W4308444225 cites W3036573352 @default.
- W4308444225 cites W3042690205 @default.
- W4308444225 cites W3081342661 @default.
- W4308444225 cites W3083737369 @default.
- W4308444225 cites W3087292529 @default.
- W4308444225 cites W3088112144 @default.
- W4308444225 cites W3088876058 @default.
- W4308444225 cites W3091212712 @default.
- W4308444225 cites W3092688604 @default.
- W4308444225 cites W3095857984 @default.
- W4308444225 cites W3102283426 @default.
- W4308444225 cites W3116590863 @default.
- W4308444225 cites W3120236245 @default.
- W4308444225 cites W3120679585 @default.
- W4308444225 cites W3125783332 @default.
- W4308444225 cites W3127988635 @default.
- W4308444225 cites W3128121831 @default.
- W4308444225 cites W3129680379 @default.
- W4308444225 cites W3133383760 @default.