Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308444552> ?p ?o ?g. }
- W4308444552 endingPage "7797" @default.
- W4308444552 startingPage "7797" @default.
- W4308444552 abstract "In this paper, a new method for fatigue life prediction under multiaxial stress-strain conditions is developed. The method applies machine learning with the Gaussian process for regression to build a fatigue model. The fatigue failure mechanisms are reflected in the model by the application of the physics-based stress and strain invariants as input quantities. The application of the machine learning algorithm solved the problem of assigning an adequate parametric fatigue model to given material and loading conditions. The model was verified using the experimental data on the CuZn37 brass subjected to various cyclic loadings, including non-proportional multiaxial strain paths. The performance of the machine learning-based fatigue life prediction model is higher than the performance of the well-known parametric models." @default.
- W4308444552 created "2022-11-11" @default.
- W4308444552 creator A5005845145 @default.
- W4308444552 creator A5007855388 @default.
- W4308444552 creator A5066545589 @default.
- W4308444552 date "2022-11-04" @default.
- W4308444552 modified "2023-10-04" @default.
- W4308444552 title "Gaussian Process for Machine Learning-Based Fatigue Life Prediction Model under Multiaxial Stress–Strain Conditions" @default.
- W4308444552 cites W1557682109 @default.
- W4308444552 cites W1760622977 @default.
- W4308444552 cites W1877953595 @default.
- W4308444552 cites W1971678630 @default.
- W4308444552 cites W1979818320 @default.
- W4308444552 cites W1985569216 @default.
- W4308444552 cites W1989529325 @default.
- W4308444552 cites W1996487016 @default.
- W4308444552 cites W2010320030 @default.
- W4308444552 cites W2023747358 @default.
- W4308444552 cites W2025136019 @default.
- W4308444552 cites W2026005921 @default.
- W4308444552 cites W2026125150 @default.
- W4308444552 cites W2027249269 @default.
- W4308444552 cites W2029214814 @default.
- W4308444552 cites W2038141976 @default.
- W4308444552 cites W2040099098 @default.
- W4308444552 cites W2041751933 @default.
- W4308444552 cites W2046823542 @default.
- W4308444552 cites W2051196068 @default.
- W4308444552 cites W2051319254 @default.
- W4308444552 cites W2052706427 @default.
- W4308444552 cites W2060447224 @default.
- W4308444552 cites W2061521849 @default.
- W4308444552 cites W2068171882 @default.
- W4308444552 cites W2082594979 @default.
- W4308444552 cites W2088767960 @default.
- W4308444552 cites W2089625235 @default.
- W4308444552 cites W2145575780 @default.
- W4308444552 cites W2146490209 @default.
- W4308444552 cites W2254491984 @default.
- W4308444552 cites W2279457371 @default.
- W4308444552 cites W2281422679 @default.
- W4308444552 cites W2416845274 @default.
- W4308444552 cites W2495358219 @default.
- W4308444552 cites W2499921288 @default.
- W4308444552 cites W2561548083 @default.
- W4308444552 cites W2605007143 @default.
- W4308444552 cites W2609995439 @default.
- W4308444552 cites W2626215932 @default.
- W4308444552 cites W2742365844 @default.
- W4308444552 cites W2808843169 @default.
- W4308444552 cites W2809689341 @default.
- W4308444552 cites W2811389116 @default.
- W4308444552 cites W2887294179 @default.
- W4308444552 cites W2915003033 @default.
- W4308444552 cites W2944140915 @default.
- W4308444552 cites W2944724700 @default.
- W4308444552 cites W2954741797 @default.
- W4308444552 cites W2964783196 @default.
- W4308444552 cites W3001258340 @default.
- W4308444552 cites W3006023504 @default.
- W4308444552 cites W3008933784 @default.
- W4308444552 cites W3025605929 @default.
- W4308444552 cites W3036697727 @default.
- W4308444552 cites W3045530378 @default.
- W4308444552 cites W3081258359 @default.
- W4308444552 cites W3082758367 @default.
- W4308444552 cites W3084417819 @default.
- W4308444552 cites W3095555015 @default.
- W4308444552 cites W3119363166 @default.
- W4308444552 cites W3127550624 @default.
- W4308444552 cites W3151456791 @default.
- W4308444552 cites W3156265040 @default.
- W4308444552 cites W3186075706 @default.
- W4308444552 cites W3211922637 @default.
- W4308444552 cites W4205249048 @default.
- W4308444552 cites W4211049957 @default.
- W4308444552 cites W4220776132 @default.
- W4308444552 cites W4231802220 @default.
- W4308444552 doi "https://doi.org/10.3390/ma15217797" @default.
- W4308444552 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36363388" @default.
- W4308444552 hasPublicationYear "2022" @default.
- W4308444552 type Work @default.
- W4308444552 citedByCount "5" @default.
- W4308444552 countsByYear W43084445522023 @default.
- W4308444552 crossrefType "journal-article" @default.
- W4308444552 hasAuthorship W4308444552A5005845145 @default.
- W4308444552 hasAuthorship W4308444552A5007855388 @default.
- W4308444552 hasAuthorship W4308444552A5066545589 @default.
- W4308444552 hasBestOaLocation W43084445521 @default.
- W4308444552 hasConcept C105795698 @default.
- W4308444552 hasConcept C111919701 @default.
- W4308444552 hasConcept C117251300 @default.
- W4308444552 hasConcept C119857082 @default.
- W4308444552 hasConcept C121332964 @default.
- W4308444552 hasConcept C127413603 @default.
- W4308444552 hasConcept C135628077 @default.
- W4308444552 hasConcept C138885662 @default.
- W4308444552 hasConcept C163716315 @default.