Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308444826> ?p ?o ?g. }
- W4308444826 endingPage "2700" @default.
- W4308444826 startingPage "2700" @default.
- W4308444826 abstract "Background: Hospitals face a significant problem meeting patients' medical needs during epidemics, especially when the number of patients increases rapidly, as seen during the recent COVID-19 pandemic. This study designs a treatment recommender system (RS) for the efficient management of human capital and resources such as doctors, medicines, and resources in hospitals. We hypothesize that a deep learning framework, when combined with search paradigms in an image framework, can make the RS very efficient. Methodology: This study uses a Convolutional neural network (CNN) model for the feature extraction of the images and discovers the most similar patients. The input queries patients from the hospital database with similar chest X-ray images. It uses a similarity metric for the similarity computation of the images. Results: This methodology recommends the doctors, medicines, and resources associated with similar patients to a COVID-19 patients being admitted to the hospital. The performance of the proposed RS is verified with five different feature extraction CNN models and four similarity measures. The proposed RS with a ResNet-50 CNN feature extraction model and Maxwell-Boltzmann similarity is found to be a proper framework for treatment recommendation with a mean average precision of more than 0.90 for threshold similarities in the range of 0.7 to 0.9 and an average highest cosine similarity of more than 0.95. Conclusions: Overall, an RS with a CNN model and image similarity is proven as an efficient tool for the proper management of resources during the peak period of pandemics and can be adopted in clinical settings." @default.
- W4308444826 created "2022-11-11" @default.
- W4308444826 creator A5000415781 @default.
- W4308444826 creator A5024689501 @default.
- W4308444826 creator A5025003931 @default.
- W4308444826 creator A5042253646 @default.
- W4308444826 creator A5053917840 @default.
- W4308444826 creator A5074569410 @default.
- W4308444826 creator A5077231217 @default.
- W4308444826 creator A5078971223 @default.
- W4308444826 date "2022-11-05" @default.
- W4308444826 modified "2023-10-05" @default.
- W4308444826 title "Recommender System for the Efficient Treatment of COVID-19 Using a Convolutional Neural Network Model and Image Similarity" @default.
- W4308444826 cites W2042203976 @default.
- W4308444826 cites W2194775991 @default.
- W4308444826 cites W2210549170 @default.
- W4308444826 cites W2606310481 @default.
- W4308444826 cites W2610932492 @default.
- W4308444826 cites W2786147743 @default.
- W4308444826 cites W2787843824 @default.
- W4308444826 cites W2791914566 @default.
- W4308444826 cites W2809254203 @default.
- W4308444826 cites W2891639565 @default.
- W4308444826 cites W2899602240 @default.
- W4308444826 cites W2906424845 @default.
- W4308444826 cites W2919115771 @default.
- W4308444826 cites W2920607013 @default.
- W4308444826 cites W3010567479 @default.
- W4308444826 cites W3012756997 @default.
- W4308444826 cites W3012849736 @default.
- W4308444826 cites W3013277995 @default.
- W4308444826 cites W3021921998 @default.
- W4308444826 cites W3027682070 @default.
- W4308444826 cites W3043075211 @default.
- W4308444826 cites W3048538617 @default.
- W4308444826 cites W3048886990 @default.
- W4308444826 cites W3080833865 @default.
- W4308444826 cites W3086462707 @default.
- W4308444826 cites W3087406541 @default.
- W4308444826 cites W3090850516 @default.
- W4308444826 cites W3092248525 @default.
- W4308444826 cites W3099969241 @default.
- W4308444826 cites W3100956988 @default.
- W4308444826 cites W3108203735 @default.
- W4308444826 cites W3108277758 @default.
- W4308444826 cites W3116103629 @default.
- W4308444826 cites W3121009121 @default.
- W4308444826 cites W3121796306 @default.
- W4308444826 cites W3127602994 @default.
- W4308444826 cites W3127929412 @default.
- W4308444826 cites W3130172878 @default.
- W4308444826 cites W3134339621 @default.
- W4308444826 cites W3135000395 @default.
- W4308444826 cites W3135057764 @default.
- W4308444826 cites W3140854437 @default.
- W4308444826 cites W3148333766 @default.
- W4308444826 cites W3155428737 @default.
- W4308444826 cites W3158188225 @default.
- W4308444826 cites W3163027578 @default.
- W4308444826 cites W3171062249 @default.
- W4308444826 cites W3174231797 @default.
- W4308444826 cites W3192433980 @default.
- W4308444826 cites W3196284293 @default.
- W4308444826 cites W3204073565 @default.
- W4308444826 cites W3210534354 @default.
- W4308444826 cites W3211191383 @default.
- W4308444826 cites W3212614933 @default.
- W4308444826 cites W3214415158 @default.
- W4308444826 cites W3214583359 @default.
- W4308444826 cites W3215490101 @default.
- W4308444826 cites W3217735524 @default.
- W4308444826 cites W4200225381 @default.
- W4308444826 cites W4200551431 @default.
- W4308444826 cites W4205100811 @default.
- W4308444826 cites W4206201635 @default.
- W4308444826 cites W4206639929 @default.
- W4308444826 cites W4220697397 @default.
- W4308444826 cites W4280557296 @default.
- W4308444826 cites W4281251645 @default.
- W4308444826 cites W4281263011 @default.
- W4308444826 cites W4281628150 @default.
- W4308444826 cites W4281695756 @default.
- W4308444826 cites W4283455403 @default.
- W4308444826 cites W4291916123 @default.
- W4308444826 cites W4294675761 @default.
- W4308444826 cites W4295906392 @default.
- W4308444826 cites W2899879523 @default.
- W4308444826 doi "https://doi.org/10.3390/diagnostics12112700" @default.
- W4308444826 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36359545" @default.
- W4308444826 hasPublicationYear "2022" @default.
- W4308444826 type Work @default.
- W4308444826 citedByCount "4" @default.
- W4308444826 countsByYear W43084448262023 @default.
- W4308444826 crossrefType "journal-article" @default.
- W4308444826 hasAuthorship W4308444826A5000415781 @default.
- W4308444826 hasAuthorship W4308444826A5024689501 @default.
- W4308444826 hasAuthorship W4308444826A5025003931 @default.
- W4308444826 hasAuthorship W4308444826A5042253646 @default.