Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308448210> ?p ?o ?g. }
- W4308448210 abstract "Muscle atrophy due to colorectal cancer severely reduces the quality of life and survival time of patients. However, the underlying causative mechanisms and therapeutic agents are not well understood. The aim of this study was to screen and identify the microRNA (miRNA)–mRNA regulatory network and therapeutic targets of celastrol in colorectal cancer causing muscle atrophy via blood exosomes. Datasets were downloaded from the Gene Expression Omnibus online database. Differential expression analysis was first performed using the blood exosome dataset GSE39833 from colorectal cancer and normal humans to identify differentially expressed (DE) miRNAs, and then, transcriptional enrichment analysis was performed to identify important enriched genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by FunRich software. Using the muscle atrophy sample GSE34111, the DE mRNAs in the muscle atrophy sample were analyzed, a regulatory network map was established based on miRNA‒mRNA regulatory mechanisms, further GO and KEGG enrichment analyses were performed for the DE genes in muscle atrophy via Cytoscape’s ClueGO plug-in, and the network pharmacology pharmacophore analysis method was used to analyze the celastrol therapeutic targets, taking intersections to find the therapeutic targets of celastrol, using the artificial intelligence AlphaFold2 to predict the protein structures of the key targets, and finally using molecular docking to verify whether celastrol and the target proteins can be successfully docked. A total of 82 DE miRNAs were obtained, and the top 10 enriched target genes were identified. The enrichment of the 82 miRNAs showed a close correlation with muscle atrophy, and 332 DE mRNAs were found by differential expression analysis in muscle atrophy samples, among which 44 mRNA genes were involved in miRNA‒mRNA networks. The DE genes in muscle atrophy were enriched for 30 signaling pathways, and 228 target genes were annotated after pharmacophore target analysis. The NR1D2 gene, the target of treatment, was found by taking intersections, the protein structure of this target was predicted by AlphaFold2, and the structure was successfully docked and validated using molecular docking. In our present study, colorectal cancer likely enters the muscle from blood exosomes and regulates skeletal muscle atrophy through miRNA‒mRNA regulatory network mechanisms, and celastrol treats muscle through NR1D2 in the miRNA‒mRNA regulatory network." @default.
- W4308448210 created "2022-11-12" @default.
- W4308448210 creator A5010408758 @default.
- W4308448210 creator A5086664284 @default.
- W4308448210 date "2022-11-07" @default.
- W4308448210 modified "2023-10-16" @default.
- W4308448210 title "Integrated bioinformatics, network pharmacology, and artificial intelligence to predict the mechanism of celastrol against muscle atrophy caused by colorectal cancer" @default.
- W4308448210 cites W1992970284 @default.
- W4308448210 cites W2021171232 @default.
- W4308448210 cites W2031372518 @default.
- W4308448210 cites W2092826514 @default.
- W4308448210 cites W2093682445 @default.
- W4308448210 cites W2118258530 @default.
- W4308448210 cites W2125045325 @default.
- W4308448210 cites W2128160901 @default.
- W4308448210 cites W2146512944 @default.
- W4308448210 cites W2166190665 @default.
- W4308448210 cites W2169589032 @default.
- W4308448210 cites W2596470818 @default.
- W4308448210 cites W2602652174 @default.
- W4308448210 cites W2774536547 @default.
- W4308448210 cites W2792631705 @default.
- W4308448210 cites W2805797121 @default.
- W4308448210 cites W2903584355 @default.
- W4308448210 cites W2903862932 @default.
- W4308448210 cites W2905025247 @default.
- W4308448210 cites W2941901573 @default.
- W4308448210 cites W2943964839 @default.
- W4308448210 cites W2947659393 @default.
- W4308448210 cites W2947935586 @default.
- W4308448210 cites W2961887674 @default.
- W4308448210 cites W2991321118 @default.
- W4308448210 cites W2997166998 @default.
- W4308448210 cites W3009779988 @default.
- W4308448210 cites W3016484091 @default.
- W4308448210 cites W3028471734 @default.
- W4308448210 cites W3042800957 @default.
- W4308448210 cites W3087403393 @default.
- W4308448210 cites W3089411560 @default.
- W4308448210 cites W3091696020 @default.
- W4308448210 cites W3092753281 @default.
- W4308448210 cites W3105649808 @default.
- W4308448210 cites W3117884280 @default.
- W4308448210 cites W3125788115 @default.
- W4308448210 cites W3137329468 @default.
- W4308448210 cites W3153941324 @default.
- W4308448210 cites W3159875702 @default.
- W4308448210 cites W3160207819 @default.
- W4308448210 cites W3177447782 @default.
- W4308448210 cites W3177828909 @default.
- W4308448210 cites W3205291713 @default.
- W4308448210 cites W3211142261 @default.
- W4308448210 cites W3213320950 @default.
- W4308448210 cites W3214065522 @default.
- W4308448210 cites W3214262530 @default.
- W4308448210 cites W338532611 @default.
- W4308448210 cites W4200393232 @default.
- W4308448210 cites W4206916176 @default.
- W4308448210 cites W4210528714 @default.
- W4308448210 cites W4213316420 @default.
- W4308448210 cites W4220814293 @default.
- W4308448210 cites W4220872250 @default.
- W4308448210 cites W4225403117 @default.
- W4308448210 cites W4225791674 @default.
- W4308448210 cites W4226024558 @default.
- W4308448210 cites W4280488623 @default.
- W4308448210 cites W4281484156 @default.
- W4308448210 cites W4282972498 @default.
- W4308448210 cites W4283219703 @default.
- W4308448210 cites W843920946 @default.
- W4308448210 doi "https://doi.org/10.3389/fgene.2022.1012932" @default.
- W4308448210 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36419834" @default.
- W4308448210 hasPublicationYear "2022" @default.
- W4308448210 type Work @default.
- W4308448210 citedByCount "1" @default.
- W4308448210 countsByYear W43084482102023 @default.
- W4308448210 crossrefType "journal-article" @default.
- W4308448210 hasAuthorship W4308448210A5010408758 @default.
- W4308448210 hasAuthorship W4308448210A5086664284 @default.
- W4308448210 hasBestOaLocation W43084482101 @default.
- W4308448210 hasConcept C104317684 @default.
- W4308448210 hasConcept C121608353 @default.
- W4308448210 hasConcept C145059251 @default.
- W4308448210 hasConcept C150194340 @default.
- W4308448210 hasConcept C152724338 @default.
- W4308448210 hasConcept C162317418 @default.
- W4308448210 hasConcept C526805850 @default.
- W4308448210 hasConcept C54355233 @default.
- W4308448210 hasConcept C60644358 @default.
- W4308448210 hasConcept C70721500 @default.
- W4308448210 hasConcept C86803240 @default.
- W4308448210 hasConceptScore W4308448210C104317684 @default.
- W4308448210 hasConceptScore W4308448210C121608353 @default.
- W4308448210 hasConceptScore W4308448210C145059251 @default.
- W4308448210 hasConceptScore W4308448210C150194340 @default.
- W4308448210 hasConceptScore W4308448210C152724338 @default.
- W4308448210 hasConceptScore W4308448210C162317418 @default.
- W4308448210 hasConceptScore W4308448210C526805850 @default.
- W4308448210 hasConceptScore W4308448210C54355233 @default.
- W4308448210 hasConceptScore W4308448210C60644358 @default.