Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308450110> ?p ?o ?g. }
- W4308450110 abstract "It is difficult to accurately assess the health literacy(HL) level of Mongolians by using Chinese conventional HL questionnaire, due to their particularity in language, culture and living environment. Therefore, it is very important to design an exclusive HL questionnaire for them. In addition, the existing statistical models cannot meet the requirement of HL assessment with high precision, so it is necessary to study a new HL assessment model.A HL questionnaire with 68 questions is designed by combing the HLS-EU-Q47and the characteristics of Mongolians in China. 742 Mongolians aged 18 to 87 in Inner Mongolia of China answered the questionnaire. A data set with 742 samples is constructed, where each sample has 68 features and 1 target. Based on it, the XGB and LGBM regression models are respectively constructed to assess the HL levels of respondents, and their evaluation effects are compared. The impact of each question on the HL level is quantitatively analyzed by using the feature-importance function in LGBM model to verify the effectiveness of the questionnaire and to find the key factors for affecting HL.The HL questionnaire has the high reliability, which is reflected by the high internal consistency (Cronbach's coefficient=0.807) and test-retest reliability (Mutual Information Score= 0.803). The validity of the HL questionnaire is obtained by solving KMO and Bartlett Spherical Test Chi-square Value, which are 0.765 and 2486 ([Formula: see text]), respectively. [Formula: see text] index and the absolute error obtained by using the HL assessment model based on LGBM are 0.98347 and 11, which are better than ones by applying the model based-XGB, respectively. The quantitative analysis results show that all 68 questions have influence on HL level, but their degree are different. The first three factors are age, salary level, the judgment ability for the HL information in media, respectively. The HL level distribution of the respondents was 66.71[Formula: see text] excellent, 25.74[Formula: see text] good and 7.54[Formula: see text] poor, respectively.The presented HL questionnaire with 68 questions and LGBM regression model can obtain the HL level assessment results with high precision for Mongolians in China. The impact of each question in the questionnaire on the final assessment results can be quantified by using the feature-importance function in LGBM model, which is better than the existing qualitative analysis methods." @default.
- W4308450110 created "2022-11-12" @default.
- W4308450110 creator A5015232078 @default.
- W4308450110 creator A5022154207 @default.
- W4308450110 date "2022-11-05" @default.
- W4308450110 modified "2023-10-14" @default.
- W4308450110 title "Questionnaire and LGBM Model for Assessing Health Literacy levels of Mongolians in China" @default.
- W4308450110 cites W1553187970 @default.
- W4308450110 cites W2009868500 @default.
- W4308450110 cites W2046954222 @default.
- W4308450110 cites W2101761001 @default.
- W4308450110 cites W2176895052 @default.
- W4308450110 cites W2522672089 @default.
- W4308450110 cites W2534650373 @default.
- W4308450110 cites W2596369794 @default.
- W4308450110 cites W2609260904 @default.
- W4308450110 cites W2805033327 @default.
- W4308450110 cites W2964856481 @default.
- W4308450110 cites W2969625896 @default.
- W4308450110 cites W2972816462 @default.
- W4308450110 cites W3011224866 @default.
- W4308450110 cites W3024162587 @default.
- W4308450110 cites W3027205685 @default.
- W4308450110 cites W3042911660 @default.
- W4308450110 cites W3085809670 @default.
- W4308450110 cites W3088460209 @default.
- W4308450110 cites W3091974061 @default.
- W4308450110 cites W3093758045 @default.
- W4308450110 cites W3095532857 @default.
- W4308450110 cites W3095913735 @default.
- W4308450110 cites W3102777843 @default.
- W4308450110 cites W3120863705 @default.
- W4308450110 cites W3122495858 @default.
- W4308450110 cites W3125523317 @default.
- W4308450110 cites W3176421995 @default.
- W4308450110 cites W4254865137 @default.
- W4308450110 doi "https://doi.org/10.1186/s12889-022-14392-2" @default.
- W4308450110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36335364" @default.
- W4308450110 hasPublicationYear "2022" @default.
- W4308450110 type Work @default.
- W4308450110 citedByCount "0" @default.
- W4308450110 crossrefType "journal-article" @default.
- W4308450110 hasAuthorship W4308450110A5015232078 @default.
- W4308450110 hasAuthorship W4308450110A5022154207 @default.
- W4308450110 hasBestOaLocation W43084501101 @default.
- W4308450110 hasConcept C105795698 @default.
- W4308450110 hasConcept C106906290 @default.
- W4308450110 hasConcept C121332964 @default.
- W4308450110 hasConcept C138816342 @default.
- W4308450110 hasConcept C140556311 @default.
- W4308450110 hasConcept C142724271 @default.
- W4308450110 hasConcept C144024400 @default.
- W4308450110 hasConcept C149923435 @default.
- W4308450110 hasConcept C151730666 @default.
- W4308450110 hasConcept C160735492 @default.
- W4308450110 hasConcept C162324750 @default.
- W4308450110 hasConcept C163258240 @default.
- W4308450110 hasConcept C171606756 @default.
- W4308450110 hasConcept C2777267654 @default.
- W4308450110 hasConcept C2778843546 @default.
- W4308450110 hasConcept C33923547 @default.
- W4308450110 hasConcept C43214815 @default.
- W4308450110 hasConcept C50522688 @default.
- W4308450110 hasConcept C556039675 @default.
- W4308450110 hasConcept C62520636 @default.
- W4308450110 hasConcept C70410870 @default.
- W4308450110 hasConcept C71924100 @default.
- W4308450110 hasConcept C86803240 @default.
- W4308450110 hasConcept C99454951 @default.
- W4308450110 hasConceptScore W4308450110C105795698 @default.
- W4308450110 hasConceptScore W4308450110C106906290 @default.
- W4308450110 hasConceptScore W4308450110C121332964 @default.
- W4308450110 hasConceptScore W4308450110C138816342 @default.
- W4308450110 hasConceptScore W4308450110C140556311 @default.
- W4308450110 hasConceptScore W4308450110C142724271 @default.
- W4308450110 hasConceptScore W4308450110C144024400 @default.
- W4308450110 hasConceptScore W4308450110C149923435 @default.
- W4308450110 hasConceptScore W4308450110C151730666 @default.
- W4308450110 hasConceptScore W4308450110C160735492 @default.
- W4308450110 hasConceptScore W4308450110C162324750 @default.
- W4308450110 hasConceptScore W4308450110C163258240 @default.
- W4308450110 hasConceptScore W4308450110C171606756 @default.
- W4308450110 hasConceptScore W4308450110C2777267654 @default.
- W4308450110 hasConceptScore W4308450110C2778843546 @default.
- W4308450110 hasConceptScore W4308450110C33923547 @default.
- W4308450110 hasConceptScore W4308450110C43214815 @default.
- W4308450110 hasConceptScore W4308450110C50522688 @default.
- W4308450110 hasConceptScore W4308450110C556039675 @default.
- W4308450110 hasConceptScore W4308450110C62520636 @default.
- W4308450110 hasConceptScore W4308450110C70410870 @default.
- W4308450110 hasConceptScore W4308450110C71924100 @default.
- W4308450110 hasConceptScore W4308450110C86803240 @default.
- W4308450110 hasConceptScore W4308450110C99454951 @default.
- W4308450110 hasIssue "1" @default.
- W4308450110 hasLocation W43084501101 @default.
- W4308450110 hasLocation W43084501102 @default.
- W4308450110 hasLocation W43084501103 @default.
- W4308450110 hasOpenAccess W4308450110 @default.
- W4308450110 hasPrimaryLocation W43084501101 @default.
- W4308450110 hasRelatedWork W1999214876 @default.