Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308451981> ?p ?o ?g. }
- W4308451981 abstract "In this paper, we develop the cell-average based neural network (CANN) method to solve third order and fifth order Korteweg-de Vries (KdV) type equations. The CANN method is based on the weak or integral formulation of the partial differential equations. A simple feedforward network is forced to learn the cell average difference between two consecutive time steps. One solution trajectory corresponding to a generic initial value is used to generate the data set to train the network parameters, which uniquely determine a one-step explicit finite volume based network method. Once well-trained, the CANN method can be generalized to a suitable family of initial value problems. Comparing with conventional explicit methods, where the time step size is restricted as Δ t = O (Δ x 3 ) or Δ t = O (Δ x 5 ), the CANN method is able to evolve the solution forward accurately with a much larger time step size of Δ t = O (Δ x ). A large group of numerical tests are carried out to verify the effectiveness, stability and accuracy of the CANN method. Wave propagation is well resolved with indistinguishable dispersion and dissipation errors. The CANN approximations agree well with the exact solution for long time simulation." @default.
- W4308451981 created "2022-11-12" @default.
- W4308451981 creator A5064601117 @default.
- W4308451981 creator A5068327587 @default.
- W4308451981 creator A5074278814 @default.
- W4308451981 date "2022-11-07" @default.
- W4308451981 modified "2023-10-15" @default.
- W4308451981 title "Cell-average based neural network method for third order and fifth order KdV type equations" @default.
- W4308451981 cites W1979722387 @default.
- W4308451981 cites W1980085415 @default.
- W4308451981 cites W1990720130 @default.
- W4308451981 cites W1993384302 @default.
- W4308451981 cites W1998646770 @default.
- W4308451981 cites W2019767773 @default.
- W4308451981 cites W2025559654 @default.
- W4308451981 cites W2060466621 @default.
- W4308451981 cites W2062228129 @default.
- W4308451981 cites W2068981255 @default.
- W4308451981 cites W2080510050 @default.
- W4308451981 cites W2103496339 @default.
- W4308451981 cites W2110627003 @default.
- W4308451981 cites W2135666645 @default.
- W4308451981 cites W2166116275 @default.
- W4308451981 cites W2525748878 @default.
- W4308451981 cites W2600297185 @default.
- W4308451981 cites W2749028154 @default.
- W4308451981 cites W2754833785 @default.
- W4308451981 cites W2767537294 @default.
- W4308451981 cites W2768535327 @default.
- W4308451981 cites W2770250658 @default.
- W4308451981 cites W2784733489 @default.
- W4308451981 cites W2786232134 @default.
- W4308451981 cites W2890968382 @default.
- W4308451981 cites W2899283552 @default.
- W4308451981 cites W2903660960 @default.
- W4308451981 cites W2921773029 @default.
- W4308451981 cites W2944808962 @default.
- W4308451981 cites W2946866513 @default.
- W4308451981 cites W2964110066 @default.
- W4308451981 cites W2974916071 @default.
- W4308451981 cites W2980396542 @default.
- W4308451981 cites W3003922491 @default.
- W4308451981 cites W3097724114 @default.
- W4308451981 cites W3098175809 @default.
- W4308451981 cites W3100024803 @default.
- W4308451981 cites W3101260193 @default.
- W4308451981 cites W3102546068 @default.
- W4308451981 cites W3125537303 @default.
- W4308451981 cites W3171209985 @default.
- W4308451981 cites W3207183244 @default.
- W4308451981 cites W3208067755 @default.
- W4308451981 cites W3212943818 @default.
- W4308451981 cites W4223440841 @default.
- W4308451981 cites W4226050532 @default.
- W4308451981 doi "https://doi.org/10.3389/fams.2022.1021069" @default.
- W4308451981 hasPublicationYear "2022" @default.
- W4308451981 type Work @default.
- W4308451981 citedByCount "1" @default.
- W4308451981 countsByYear W43084519812023 @default.
- W4308451981 crossrefType "journal-article" @default.
- W4308451981 hasAuthorship W4308451981A5064601117 @default.
- W4308451981 hasAuthorship W4308451981A5068327587 @default.
- W4308451981 hasAuthorship W4308451981A5074278814 @default.
- W4308451981 hasBestOaLocation W43084519811 @default.
- W4308451981 hasConcept C105795698 @default.
- W4308451981 hasConcept C111472728 @default.
- W4308451981 hasConcept C112972136 @default.
- W4308451981 hasConcept C11413529 @default.
- W4308451981 hasConcept C119857082 @default.
- W4308451981 hasConcept C121332964 @default.
- W4308451981 hasConcept C134306372 @default.
- W4308451981 hasConcept C135402231 @default.
- W4308451981 hasConcept C138885662 @default.
- W4308451981 hasConcept C146630112 @default.
- W4308451981 hasConcept C154945302 @default.
- W4308451981 hasConcept C158622935 @default.
- W4308451981 hasConcept C177264268 @default.
- W4308451981 hasConcept C18903297 @default.
- W4308451981 hasConcept C199360897 @default.
- W4308451981 hasConcept C2776291640 @default.
- W4308451981 hasConcept C2777299769 @default.
- W4308451981 hasConcept C2780586882 @default.
- W4308451981 hasConcept C28826006 @default.
- W4308451981 hasConcept C33923547 @default.
- W4308451981 hasConcept C41008148 @default.
- W4308451981 hasConcept C47702885 @default.
- W4308451981 hasConcept C50644808 @default.
- W4308451981 hasConcept C62520636 @default.
- W4308451981 hasConcept C78045399 @default.
- W4308451981 hasConcept C86803240 @default.
- W4308451981 hasConcept C93779851 @default.
- W4308451981 hasConcept C97355855 @default.
- W4308451981 hasConceptScore W4308451981C105795698 @default.
- W4308451981 hasConceptScore W4308451981C111472728 @default.
- W4308451981 hasConceptScore W4308451981C112972136 @default.
- W4308451981 hasConceptScore W4308451981C11413529 @default.
- W4308451981 hasConceptScore W4308451981C119857082 @default.
- W4308451981 hasConceptScore W4308451981C121332964 @default.
- W4308451981 hasConceptScore W4308451981C134306372 @default.
- W4308451981 hasConceptScore W4308451981C135402231 @default.