Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308453722> ?p ?o ?g. }
- W4308453722 endingPage "100140" @default.
- W4308453722 startingPage "100140" @default.
- W4308453722 abstract "The sensitivity of future groundwater recharge and temperature development was investigated for three alluvial aquifers in the urban agglomeration of the city of Basel, Switzerland. For selected climate projections groundwater recharge and the associated temperature imprinting of aquifers, which are mainly determined by artificial groundwater recharge and infiltrating surface water, were investigated. 3D numerical groundwater flow and heat-transport modeling, allowed quantifying and differentiating between natural and artificial groundwater recharge and thermal impacts. For aquifers where the infiltration of river water is an important component in the groundwater balance, the effects of climate change will be influenced by changes in river flow and thermal regimes and also by artificial groundwater recharge of surface water. Considering all climate scenarios investigated, the net heat input from river water infiltration for the Lange Erlen case study area increases by an average of 42 % by 2055 and 62 % by 2085 compared to the reference year 2000. Together with further heat inputs, particularly by artificial groundwater recharge, the temperatures of the extracted drinking water would increase by 0.4 to 1.3 K by 2055 and 0.7 to 3.1 K by 2085. In the Hardwald case study area, the most significant heat exchange occurs by artificial groundwater recharge. As a result, and considering all climate scenarios investigated, heat loss by groundwater extraction increases by an average of 38 % during the winter months from the year 2000 to the year 2085. The increased heat input, especially in the summer months, results in a temperature increase of the extracted drinking water of 0.2 to 1.0 K by 2055 and 0.6 to 4.0 K by 2085. In the Lower Birs Valley case study area, net heat input from river water infiltration increases by an average of 42 % by 2055 and 62 % by 2085. Correspondingly, the temperatures of the extracted drinking water increase by 0.9 to 3.2 K by 2055 and by 0.3 to 5.4 K by 2085. The quantitative assessment of climate change impacts on the groundwater resources presented allows to differentiate between hydraulic and thermal impacts of natural and artificial groundwater recharge processes. Accordingly, individual drinking water wells are exposed differently to the various components of groundwater recharge. Seasonal shifts in natural groundwater recharge processes and adaptation strategies related to artificial groundwater recharge could therefore be an important factor affecting groundwater resources in future. Moreover, increased groundwater recharge from artificial groundwater recharge systems in summer months and the interaction with surface waters during high runoff periods, which will occur more often in winter months, are likely to strongly influence groundwater recharge and temperatures." @default.
- W4308453722 created "2022-11-12" @default.
- W4308453722 creator A5036030273 @default.
- W4308453722 creator A5055593358 @default.
- W4308453722 creator A5072296981 @default.
- W4308453722 creator A5078436509 @default.
- W4308453722 creator A5080992380 @default.
- W4308453722 date "2022-12-01" @default.
- W4308453722 modified "2023-10-18" @default.
- W4308453722 title "Impacts of climate change on Swiss alluvial aquifers – A quantitative forecast focused on natural and artificial groundwater recharge by surface water infiltration" @default.
- W4308453722 cites W1224122335 @default.
- W4308453722 cites W1246924907 @default.
- W4308453722 cites W1963858151 @default.
- W4308453722 cites W1971200903 @default.
- W4308453722 cites W1972074159 @default.
- W4308453722 cites W1975299596 @default.
- W4308453722 cites W1983083280 @default.
- W4308453722 cites W1996062897 @default.
- W4308453722 cites W2007217621 @default.
- W4308453722 cites W2020262988 @default.
- W4308453722 cites W2033904036 @default.
- W4308453722 cites W2045597751 @default.
- W4308453722 cites W2061078629 @default.
- W4308453722 cites W2064184540 @default.
- W4308453722 cites W2070666875 @default.
- W4308453722 cites W2074040629 @default.
- W4308453722 cites W2077623913 @default.
- W4308453722 cites W2085396229 @default.
- W4308453722 cites W2098999708 @default.
- W4308453722 cites W2114307188 @default.
- W4308453722 cites W2117223232 @default.
- W4308453722 cites W2122140248 @default.
- W4308453722 cites W2127403333 @default.
- W4308453722 cites W2131327314 @default.
- W4308453722 cites W2149973191 @default.
- W4308453722 cites W2155347783 @default.
- W4308453722 cites W2164361769 @default.
- W4308453722 cites W2164901809 @default.
- W4308453722 cites W2168313526 @default.
- W4308453722 cites W2174232425 @default.
- W4308453722 cites W2202665948 @default.
- W4308453722 cites W2202785290 @default.
- W4308453722 cites W2261023602 @default.
- W4308453722 cites W2347057720 @default.
- W4308453722 cites W2530296096 @default.
- W4308453722 cites W2599884859 @default.
- W4308453722 cites W2729051445 @default.
- W4308453722 cites W2758275649 @default.
- W4308453722 cites W2772819040 @default.
- W4308453722 cites W2795156900 @default.
- W4308453722 cites W2912459523 @default.
- W4308453722 cites W2936088667 @default.
- W4308453722 cites W3000359734 @default.
- W4308453722 cites W3023476693 @default.
- W4308453722 cites W3049327449 @default.
- W4308453722 cites W3089603870 @default.
- W4308453722 cites W3114767107 @default.
- W4308453722 cites W4236974933 @default.
- W4308453722 cites W4246451860 @default.
- W4308453722 doi "https://doi.org/10.1016/j.hydroa.2022.100140" @default.
- W4308453722 hasPublicationYear "2022" @default.
- W4308453722 type Work @default.
- W4308453722 citedByCount "2" @default.
- W4308453722 countsByYear W43084537222023 @default.
- W4308453722 crossrefType "journal-article" @default.
- W4308453722 hasAuthorship W4308453722A5036030273 @default.
- W4308453722 hasAuthorship W4308453722A5055593358 @default.
- W4308453722 hasAuthorship W4308453722A5072296981 @default.
- W4308453722 hasAuthorship W4308453722A5078436509 @default.
- W4308453722 hasAuthorship W4308453722A5080992380 @default.
- W4308453722 hasConcept C111368507 @default.
- W4308453722 hasConcept C127313418 @default.
- W4308453722 hasConcept C131227075 @default.
- W4308453722 hasConcept C132651083 @default.
- W4308453722 hasConcept C153294291 @default.
- W4308453722 hasConcept C153400128 @default.
- W4308453722 hasConcept C174091901 @default.
- W4308453722 hasConcept C187320778 @default.
- W4308453722 hasConcept C187606762 @default.
- W4308453722 hasConcept C205649164 @default.
- W4308453722 hasConcept C39432304 @default.
- W4308453722 hasConcept C75622301 @default.
- W4308453722 hasConcept C76177295 @default.
- W4308453722 hasConcept C76886044 @default.
- W4308453722 hasConcept C8625798 @default.
- W4308453722 hasConcept C87717796 @default.
- W4308453722 hasConceptScore W4308453722C111368507 @default.
- W4308453722 hasConceptScore W4308453722C127313418 @default.
- W4308453722 hasConceptScore W4308453722C131227075 @default.
- W4308453722 hasConceptScore W4308453722C132651083 @default.
- W4308453722 hasConceptScore W4308453722C153294291 @default.
- W4308453722 hasConceptScore W4308453722C153400128 @default.
- W4308453722 hasConceptScore W4308453722C174091901 @default.
- W4308453722 hasConceptScore W4308453722C187320778 @default.
- W4308453722 hasConceptScore W4308453722C187606762 @default.
- W4308453722 hasConceptScore W4308453722C205649164 @default.
- W4308453722 hasConceptScore W4308453722C39432304 @default.
- W4308453722 hasConceptScore W4308453722C75622301 @default.