Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308455107> ?p ?o ?g. }
- W4308455107 endingPage "8550" @default.
- W4308455107 startingPage "8550" @default.
- W4308455107 abstract "Rapid advancements in the medical field have drawn much attention to automatic emotion classification from EEG data. People’s emotional states are crucial factors in how they behave and interact physiologically. The diagnosis of patients’ mental disorders is one potential medical use. When feeling well, people work and communicate more effectively. Negative emotions can be detrimental to both physical and mental health. Many earlier studies that investigated the use of the electroencephalogram (EEG) for emotion classification have focused on collecting data from the whole brain because of the rapidly developing science of machine learning. However, researchers cannot understand how various emotional states and EEG traits are related. This work seeks to classify EEG signals’ positive, negative, and neutral emotional states by using a stacking-ensemble-based classification model that boosts accuracy to increase the efficacy of emotion classification using EEG. The selected features are used to train a model that was created using a random forest, light gradient boosting machine, and gradient-boosting-based stacking ensemble classifier (RLGB-SE), where the base classifiers random forest (RF), light gradient boosting machine (LightGBM), and gradient boosting classifier (GBC) were used at level 0. The meta classifier (RF) at level 1 is trained using the results from each base classifier to acquire the final predictions. The suggested ensemble model achieves a greater classification accuracy of 99.55%. Additionally, while comparing performance indices, the suggested technique outperforms as compared with the base classifiers. Comparing the proposed stacking strategy to state-of-the-art techniques, it can be seen that the performance for emotion categorization is promising." @default.
- W4308455107 created "2022-11-12" @default.
- W4308455107 creator A5006748986 @default.
- W4308455107 creator A5066018222 @default.
- W4308455107 date "2022-11-06" @default.
- W4308455107 modified "2023-10-09" @default.
- W4308455107 title "EEG-Based Emotion Classification Using Stacking Ensemble Approach" @default.
- W4308455107 cites W1206391664 @default.
- W4308455107 cites W1509031088 @default.
- W4308455107 cites W1601314345 @default.
- W4308455107 cites W1947251450 @default.
- W4308455107 cites W1970727126 @default.
- W4308455107 cites W2001097956 @default.
- W4308455107 cites W2006774342 @default.
- W4308455107 cites W2020615750 @default.
- W4308455107 cites W2025384124 @default.
- W4308455107 cites W2025751302 @default.
- W4308455107 cites W2076975861 @default.
- W4308455107 cites W2095905361 @default.
- W4308455107 cites W2104699321 @default.
- W4308455107 cites W2123504579 @default.
- W4308455107 cites W2134602648 @default.
- W4308455107 cites W2137125240 @default.
- W4308455107 cites W2162418306 @default.
- W4308455107 cites W2170883741 @default.
- W4308455107 cites W2216946510 @default.
- W4308455107 cites W2261059368 @default.
- W4308455107 cites W2294389992 @default.
- W4308455107 cites W2406223855 @default.
- W4308455107 cites W2430264155 @default.
- W4308455107 cites W2767735180 @default.
- W4308455107 cites W2803142773 @default.
- W4308455107 cites W2911964244 @default.
- W4308455107 cites W2944205279 @default.
- W4308455107 cites W3027581678 @default.
- W4308455107 cites W3086210036 @default.
- W4308455107 cites W4221085922 @default.
- W4308455107 cites W4248018214 @default.
- W4308455107 cites W4249977334 @default.
- W4308455107 cites W4303422666 @default.
- W4308455107 cites W873782400 @default.
- W4308455107 doi "https://doi.org/10.3390/s22218550" @default.
- W4308455107 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36366249" @default.
- W4308455107 hasPublicationYear "2022" @default.
- W4308455107 type Work @default.
- W4308455107 citedByCount "7" @default.
- W4308455107 countsByYear W43084551072022 @default.
- W4308455107 countsByYear W43084551072023 @default.
- W4308455107 crossrefType "journal-article" @default.
- W4308455107 hasAuthorship W4308455107A5006748986 @default.
- W4308455107 hasAuthorship W4308455107A5066018222 @default.
- W4308455107 hasBestOaLocation W43084551071 @default.
- W4308455107 hasConcept C118552586 @default.
- W4308455107 hasConcept C119857082 @default.
- W4308455107 hasConcept C121332964 @default.
- W4308455107 hasConcept C12267149 @default.
- W4308455107 hasConcept C153180895 @default.
- W4308455107 hasConcept C154945302 @default.
- W4308455107 hasConcept C15744967 @default.
- W4308455107 hasConcept C169258074 @default.
- W4308455107 hasConcept C206310091 @default.
- W4308455107 hasConcept C2777438025 @default.
- W4308455107 hasConcept C33347731 @default.
- W4308455107 hasConcept C41008148 @default.
- W4308455107 hasConcept C45942800 @default.
- W4308455107 hasConcept C46141821 @default.
- W4308455107 hasConcept C46686674 @default.
- W4308455107 hasConcept C522805319 @default.
- W4308455107 hasConcept C70153297 @default.
- W4308455107 hasConcept C95623464 @default.
- W4308455107 hasConceptScore W4308455107C118552586 @default.
- W4308455107 hasConceptScore W4308455107C119857082 @default.
- W4308455107 hasConceptScore W4308455107C121332964 @default.
- W4308455107 hasConceptScore W4308455107C12267149 @default.
- W4308455107 hasConceptScore W4308455107C153180895 @default.
- W4308455107 hasConceptScore W4308455107C154945302 @default.
- W4308455107 hasConceptScore W4308455107C15744967 @default.
- W4308455107 hasConceptScore W4308455107C169258074 @default.
- W4308455107 hasConceptScore W4308455107C206310091 @default.
- W4308455107 hasConceptScore W4308455107C2777438025 @default.
- W4308455107 hasConceptScore W4308455107C33347731 @default.
- W4308455107 hasConceptScore W4308455107C41008148 @default.
- W4308455107 hasConceptScore W4308455107C45942800 @default.
- W4308455107 hasConceptScore W4308455107C46141821 @default.
- W4308455107 hasConceptScore W4308455107C46686674 @default.
- W4308455107 hasConceptScore W4308455107C522805319 @default.
- W4308455107 hasConceptScore W4308455107C70153297 @default.
- W4308455107 hasConceptScore W4308455107C95623464 @default.
- W4308455107 hasFunder F4320322064 @default.
- W4308455107 hasIssue "21" @default.
- W4308455107 hasLocation W43084551071 @default.
- W4308455107 hasLocation W43084551072 @default.
- W4308455107 hasLocation W43084551073 @default.
- W4308455107 hasOpenAccess W4308455107 @default.
- W4308455107 hasPrimaryLocation W43084551071 @default.
- W4308455107 hasRelatedWork W2955385375 @default.
- W4308455107 hasRelatedWork W3100297620 @default.
- W4308455107 hasRelatedWork W3195168932 @default.