Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308459823> ?p ?o ?g. }
- W4308459823 endingPage "119192" @default.
- W4308459823 startingPage "119192" @default.
- W4308459823 abstract "To benefit from the advantages of Reinforcement Learning (RL) in industrial control applications, RL methods can be used for optimal tuning of the classical controllers based on the simulation scenarios of operating conditions. In this study, the Twin Delay Deep Deterministic (TD3) policy gradient method, which is an effective actor-critic RL strategy, is implemented to learn optimal Proportional Integral (PI) controller dynamics from a Direct Current (DC) motor speed control simulation environment. For this purpose, the PI controller dynamics are introduced to the actor-network by using the PI-based observer states from the control simulation environment. A suitable Simulink simulation environment is adapted to perform the training process of the TD3 algorithm. The actor-network learns the optimal PI controller dynamics by using the reward mechanism that implements the minimization of the optimal control objective function. A setpoint filter is used to describe the desired setpoint response, and step disturbance signals with random amplitude are incorporated in the simulation environment to improve disturbance rejection control skills with the help of experience based learning in the designed control simulation environment. When the training task is completed, the optimal PI controller coefficients are obtained from the weight coefficients of the actor-network. The performance of the optimal PI dynamics, which were learned by using the TD3 algorithm and Deep Deterministic Policy Gradient algorithm, are compared. Moreover, control performance improvement of this RL based PI controller tuning method (RL-PI) is demonstrated relative to performances of both integer and fractional order PI controllers that were tuned by using several popular metaheuristic optimization algorithms such as Genetic Algorithm, Particle Swarm Optimization, Grey Wolf Optimization and Differential Evolution." @default.
- W4308459823 created "2022-11-12" @default.
- W4308459823 creator A5055897454 @default.
- W4308459823 creator A5062682055 @default.
- W4308459823 creator A5063017681 @default.
- W4308459823 creator A5072225870 @default.
- W4308459823 creator A5074377437 @default.
- W4308459823 creator A5088959198 @default.
- W4308459823 date "2023-03-01" @default.
- W4308459823 modified "2023-09-30" @default.
- W4308459823 title "A theoretical demonstration for reinforcement learning of PI control dynamics for optimal speed control of DC motors by using Twin Delay Deep Deterministic Policy Gradient Algorithm" @default.
- W4308459823 cites W1595159159 @default.
- W4308459823 cites W1989032617 @default.
- W4308459823 cites W2042132387 @default.
- W4308459823 cites W2042348570 @default.
- W4308459823 cites W2057157846 @default.
- W4308459823 cites W2061438946 @default.
- W4308459823 cites W2068878490 @default.
- W4308459823 cites W2076337359 @default.
- W4308459823 cites W2092433811 @default.
- W4308459823 cites W2107726111 @default.
- W4308459823 cites W2132372766 @default.
- W4308459823 cites W2134668622 @default.
- W4308459823 cites W2145339207 @default.
- W4308459823 cites W2152195021 @default.
- W4308459823 cites W2235027673 @default.
- W4308459823 cites W2268323638 @default.
- W4308459823 cites W2344137974 @default.
- W4308459823 cites W2533437562 @default.
- W4308459823 cites W2545326094 @default.
- W4308459823 cites W2615003254 @default.
- W4308459823 cites W2800552896 @default.
- W4308459823 cites W2888317899 @default.
- W4308459823 cites W2942402479 @default.
- W4308459823 cites W2949986912 @default.
- W4308459823 cites W2962890638 @default.
- W4308459823 cites W2967429195 @default.
- W4308459823 cites W2975615763 @default.
- W4308459823 cites W2982557718 @default.
- W4308459823 cites W3006512173 @default.
- W4308459823 cites W3010652475 @default.
- W4308459823 cites W3014432494 @default.
- W4308459823 cites W3026720552 @default.
- W4308459823 cites W3034748593 @default.
- W4308459823 cites W3041202696 @default.
- W4308459823 cites W3084666988 @default.
- W4308459823 cites W3093620985 @default.
- W4308459823 cites W3095883371 @default.
- W4308459823 cites W3117957642 @default.
- W4308459823 cites W3137037630 @default.
- W4308459823 cites W3185247296 @default.
- W4308459823 cites W3188785484 @default.
- W4308459823 cites W3197308516 @default.
- W4308459823 cites W32403112 @default.
- W4308459823 cites W4200118636 @default.
- W4308459823 cites W4200526913 @default.
- W4308459823 cites W4224312828 @default.
- W4308459823 doi "https://doi.org/10.1016/j.eswa.2022.119192" @default.
- W4308459823 hasPublicationYear "2023" @default.
- W4308459823 type Work @default.
- W4308459823 citedByCount "7" @default.
- W4308459823 countsByYear W43084598232022 @default.
- W4308459823 countsByYear W43084598232023 @default.
- W4308459823 crossrefType "journal-article" @default.
- W4308459823 hasAuthorship W4308459823A5055897454 @default.
- W4308459823 hasAuthorship W4308459823A5062682055 @default.
- W4308459823 hasAuthorship W4308459823A5063017681 @default.
- W4308459823 hasAuthorship W4308459823A5072225870 @default.
- W4308459823 hasAuthorship W4308459823A5074377437 @default.
- W4308459823 hasAuthorship W4308459823A5088959198 @default.
- W4308459823 hasConcept C12302492 @default.
- W4308459823 hasConcept C126255220 @default.
- W4308459823 hasConcept C127413603 @default.
- W4308459823 hasConcept C133731056 @default.
- W4308459823 hasConcept C154945302 @default.
- W4308459823 hasConcept C203479927 @default.
- W4308459823 hasConcept C2775924081 @default.
- W4308459823 hasConcept C33923547 @default.
- W4308459823 hasConcept C41008148 @default.
- W4308459823 hasConcept C47116090 @default.
- W4308459823 hasConcept C47446073 @default.
- W4308459823 hasConcept C536315585 @default.
- W4308459823 hasConcept C6557445 @default.
- W4308459823 hasConcept C86803240 @default.
- W4308459823 hasConcept C91575142 @default.
- W4308459823 hasConcept C97541855 @default.
- W4308459823 hasConceptScore W4308459823C12302492 @default.
- W4308459823 hasConceptScore W4308459823C126255220 @default.
- W4308459823 hasConceptScore W4308459823C127413603 @default.
- W4308459823 hasConceptScore W4308459823C133731056 @default.
- W4308459823 hasConceptScore W4308459823C154945302 @default.
- W4308459823 hasConceptScore W4308459823C203479927 @default.
- W4308459823 hasConceptScore W4308459823C2775924081 @default.
- W4308459823 hasConceptScore W4308459823C33923547 @default.
- W4308459823 hasConceptScore W4308459823C41008148 @default.
- W4308459823 hasConceptScore W4308459823C47116090 @default.
- W4308459823 hasConceptScore W4308459823C47446073 @default.
- W4308459823 hasConceptScore W4308459823C536315585 @default.