Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308467054> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4308467054 abstract "Abstract In the digital era, Economic and Finance information is huge and attainable. The financial industry is a key to stimulating the evolution of the national economy, and with the immense availability of huge data makes the process of financial data analysis both a time consuming and tedious decision making in the financial market. By analyzing this Economic and Finance information significantly and easily, valuable perceptions can be provided. For rational economic growth, information pertaining to economic affairs and likelihoods is critical to decision-makers like governmental bodies, financial institutions and banks. However, precise predictions have been demand owing to the intricacy and unpredictability of financial and economic systems in the midst of persistent changes in economic environments. This work provides to approaches for better economic prediction and decision-making using a novel method called, Multivariate Box Jenkins Neural Network-based Keynecian Reinforcement Learning (MBJNN-KRL). In this work, Financial Data Analysis Deep Economic Prediction model that contains a Multivariate Box Jenkins Long Short Term Memory Forecasting model, for better economic prediction and convergence speed even in case of large data is first designed. The deep reinforcement learning technique is then adapted to retrain neural networks and rebalance the aggregate expenditure periodically. We combined the multivariate Multivariate Box Jenkins Long Short Term Memory Forecasting and the Keynecian Reinforcement Learning models into a single integrated reinforcement learning model named Multivariate Box Jenkins Neural Network-based Keynecian Reinforcement Learning (MBJNN-KRL). Finally, distinct sets of experiments are carried out on real large-scale data set, and the results entirely prove the efficiency and robustness of the proposed method in arbitrary economic prediction based on financial data. Our empirical data revealed that the MBJNN-KRL method could attain combative financial performance compared to traditional methods in terms of predictive accuracy, convergence speed and prediction error." @default.
- W4308467054 created "2022-11-12" @default.
- W4308467054 creator A5004705428 @default.
- W4308467054 creator A5078816948 @default.
- W4308467054 date "2022-11-07" @default.
- W4308467054 modified "2023-09-24" @default.
- W4308467054 title "Box Jenkins Neural Network Keynecian Reinforcement Learning Based Financial Big Data Analysis for Optimal Prediction" @default.
- W4308467054 cites W2734777338 @default.
- W4308467054 cites W3090287211 @default.
- W4308467054 cites W4291007905 @default.
- W4308467054 doi "https://doi.org/10.21203/rs.3.rs-2229642/v1" @default.
- W4308467054 hasPublicationYear "2022" @default.
- W4308467054 type Work @default.
- W4308467054 citedByCount "0" @default.
- W4308467054 crossrefType "posted-content" @default.
- W4308467054 hasAuthorship W4308467054A5004705428 @default.
- W4308467054 hasAuthorship W4308467054A5078816948 @default.
- W4308467054 hasBestOaLocation W43084670541 @default.
- W4308467054 hasConcept C10138342 @default.
- W4308467054 hasConcept C119857082 @default.
- W4308467054 hasConcept C149782125 @default.
- W4308467054 hasConcept C154945302 @default.
- W4308467054 hasConcept C161584116 @default.
- W4308467054 hasConcept C162324750 @default.
- W4308467054 hasConcept C163068380 @default.
- W4308467054 hasConcept C41008148 @default.
- W4308467054 hasConcept C50644808 @default.
- W4308467054 hasConcept C97541855 @default.
- W4308467054 hasConceptScore W4308467054C10138342 @default.
- W4308467054 hasConceptScore W4308467054C119857082 @default.
- W4308467054 hasConceptScore W4308467054C149782125 @default.
- W4308467054 hasConceptScore W4308467054C154945302 @default.
- W4308467054 hasConceptScore W4308467054C161584116 @default.
- W4308467054 hasConceptScore W4308467054C162324750 @default.
- W4308467054 hasConceptScore W4308467054C163068380 @default.
- W4308467054 hasConceptScore W4308467054C41008148 @default.
- W4308467054 hasConceptScore W4308467054C50644808 @default.
- W4308467054 hasConceptScore W4308467054C97541855 @default.
- W4308467054 hasLocation W43084670541 @default.
- W4308467054 hasOpenAccess W4308467054 @default.
- W4308467054 hasPrimaryLocation W43084670541 @default.
- W4308467054 hasRelatedWork W2923653485 @default.
- W4308467054 hasRelatedWork W2952472710 @default.
- W4308467054 hasRelatedWork W2957776456 @default.
- W4308467054 hasRelatedWork W2961085424 @default.
- W4308467054 hasRelatedWork W3022038857 @default.
- W4308467054 hasRelatedWork W4206669594 @default.
- W4308467054 hasRelatedWork W4255994452 @default.
- W4308467054 hasRelatedWork W4319083788 @default.
- W4308467054 hasRelatedWork W4361026739 @default.
- W4308467054 hasRelatedWork W1629725936 @default.
- W4308467054 isParatext "false" @default.
- W4308467054 isRetracted "false" @default.
- W4308467054 workType "article" @default.