Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308471037> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4308471037 endingPage "37" @default.
- W4308471037 startingPage "29" @default.
- W4308471037 abstract "AbstractFalls are exceptional activities that put one’s health in danger. To limit the effect of falls, it is necessary to build fall detection and prevention systems. The goal of emerging technology is to create such systems that will improve people’s quality of life, especially for the elderly. To limit the danger of injury, a fall detection system detects the fall and generates an assistance signal. The suggested system detects falls by classifying various behaviors as fall or non-fall activities and alerting those who are affected in the event of an emergency. To calculate characteristics, the dataset SisFall is used, which contains a variety of actions performed by numerous people. The machine learning methods XGBoost and LightGBM are used to identify falls based on calculated characteristics. Using the XGBoost algorithm, the system achieves ROC-AUC scores of up to 97.64%. Our proposed solution is based on a transformer model, which is then tailored to produce the best outcomes, with an accuracy of approximately 95.7%.KeywordsFall detectionSisFallDaily living activitiesXGBoostLightGBMTransformer modelPositional encodingMulti-head attention" @default.
- W4308471037 created "2022-11-12" @default.
- W4308471037 creator A5028446786 @default.
- W4308471037 creator A5034766357 @default.
- W4308471037 creator A5044727145 @default.
- W4308471037 creator A5056737331 @default.
- W4308471037 creator A5062229326 @default.
- W4308471037 date "2022-11-08" @default.
- W4308471037 modified "2023-10-18" @default.
- W4308471037 title "Fall Detection Using Transformer Model" @default.
- W4308471037 cites W2543632018 @default.
- W4308471037 cites W2947033505 @default.
- W4308471037 cites W3094311282 @default.
- W4308471037 cites W3101657545 @default.
- W4308471037 cites W3191137513 @default.
- W4308471037 cites W3208014149 @default.
- W4308471037 cites W3210842628 @default.
- W4308471037 cites W3214562210 @default.
- W4308471037 cites W4214843096 @default.
- W4308471037 cites W4232838248 @default.
- W4308471037 doi "https://doi.org/10.1007/978-981-19-5331-6_4" @default.
- W4308471037 hasPublicationYear "2022" @default.
- W4308471037 type Work @default.
- W4308471037 citedByCount "0" @default.
- W4308471037 crossrefType "book-chapter" @default.
- W4308471037 hasAuthorship W4308471037A5028446786 @default.
- W4308471037 hasAuthorship W4308471037A5034766357 @default.
- W4308471037 hasAuthorship W4308471037A5044727145 @default.
- W4308471037 hasAuthorship W4308471037A5056737331 @default.
- W4308471037 hasAuthorship W4308471037A5062229326 @default.
- W4308471037 hasConcept C119599485 @default.
- W4308471037 hasConcept C119857082 @default.
- W4308471037 hasConcept C127413603 @default.
- W4308471037 hasConcept C154945302 @default.
- W4308471037 hasConcept C165801399 @default.
- W4308471037 hasConcept C190385971 @default.
- W4308471037 hasConcept C2776516907 @default.
- W4308471037 hasConcept C3017944768 @default.
- W4308471037 hasConcept C41008148 @default.
- W4308471037 hasConcept C545542383 @default.
- W4308471037 hasConcept C66322947 @default.
- W4308471037 hasConcept C71924100 @default.
- W4308471037 hasConcept C79403827 @default.
- W4308471037 hasConceptScore W4308471037C119599485 @default.
- W4308471037 hasConceptScore W4308471037C119857082 @default.
- W4308471037 hasConceptScore W4308471037C127413603 @default.
- W4308471037 hasConceptScore W4308471037C154945302 @default.
- W4308471037 hasConceptScore W4308471037C165801399 @default.
- W4308471037 hasConceptScore W4308471037C190385971 @default.
- W4308471037 hasConceptScore W4308471037C2776516907 @default.
- W4308471037 hasConceptScore W4308471037C3017944768 @default.
- W4308471037 hasConceptScore W4308471037C41008148 @default.
- W4308471037 hasConceptScore W4308471037C545542383 @default.
- W4308471037 hasConceptScore W4308471037C66322947 @default.
- W4308471037 hasConceptScore W4308471037C71924100 @default.
- W4308471037 hasConceptScore W4308471037C79403827 @default.
- W4308471037 hasLocation W43084710371 @default.
- W4308471037 hasOpenAccess W4308471037 @default.
- W4308471037 hasPrimaryLocation W43084710371 @default.
- W4308471037 hasRelatedWork W2899084033 @default.
- W4308471037 hasRelatedWork W2961085424 @default.
- W4308471037 hasRelatedWork W3046775127 @default.
- W4308471037 hasRelatedWork W3170094116 @default.
- W4308471037 hasRelatedWork W3209574120 @default.
- W4308471037 hasRelatedWork W4205958290 @default.
- W4308471037 hasRelatedWork W4286629047 @default.
- W4308471037 hasRelatedWork W4306321456 @default.
- W4308471037 hasRelatedWork W4306674287 @default.
- W4308471037 hasRelatedWork W4224009465 @default.
- W4308471037 isParatext "false" @default.
- W4308471037 isRetracted "false" @default.
- W4308471037 workType "book-chapter" @default.