Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308472103> ?p ?o ?g. }
- W4308472103 endingPage "457" @default.
- W4308472103 startingPage "449" @default.
- W4308472103 abstract "Surface engineering is a great way to make wear-resistant mechanical components and increase their service life in industrial and commercial applications. The behaviour of surface engineering process parameters and their effect on the output is complex and nonlinear. This research aims to use artificial neural networks (ANN) and fuzzy logic techniques to establish a reliable modeling method and estimate the abrasive wear of nanostructured WC-10Co-4Cr TIG weld claddings. In the TIG welding process, the input variables for ANN modeling are weld current, weld speed, argon flow, and standoff distance, corresponding to the output variable for weld claddings' wear resistance. The ideal ANN model architecture has a topology of 4–7-7–1, while fuzzy logic is based on the Mamdani model. The ANN model predictions were more precise with an R-value of 0.999874 than the fuzzy logic model predictions (R-value:0.959). The results showed that the ANN model accurately predicted the association between TIG welding process parameters and abrasive wear." @default.
- W4308472103 created "2022-11-12" @default.
- W4308472103 creator A5008976923 @default.
- W4308472103 creator A5038498632 @default.
- W4308472103 creator A5050396774 @default.
- W4308472103 creator A5089262599 @default.
- W4308472103 creator A5090122757 @default.
- W4308472103 date "2023-01-01" @default.
- W4308472103 modified "2023-09-29" @default.
- W4308472103 title "Estimation of abrasive wear of nanostructured WC-10Co-4Cr TIG weld cladding using neural network and fuzzy logic approach" @default.
- W4308472103 cites W1965342389 @default.
- W4308472103 cites W1984318378 @default.
- W4308472103 cites W1993945452 @default.
- W4308472103 cites W2022099730 @default.
- W4308472103 cites W2033836446 @default.
- W4308472103 cites W2045950788 @default.
- W4308472103 cites W2061860649 @default.
- W4308472103 cites W2063321796 @default.
- W4308472103 cites W2080500661 @default.
- W4308472103 cites W2084105256 @default.
- W4308472103 cites W2089512526 @default.
- W4308472103 cites W2519418385 @default.
- W4308472103 cites W2608705573 @default.
- W4308472103 cites W2616568090 @default.
- W4308472103 cites W2620779630 @default.
- W4308472103 cites W2623486333 @default.
- W4308472103 cites W2791717299 @default.
- W4308472103 cites W2800690632 @default.
- W4308472103 cites W2802480363 @default.
- W4308472103 cites W2889550429 @default.
- W4308472103 cites W2923954426 @default.
- W4308472103 cites W2972752798 @default.
- W4308472103 cites W2995199427 @default.
- W4308472103 cites W2998997506 @default.
- W4308472103 cites W3006519600 @default.
- W4308472103 cites W3014152363 @default.
- W4308472103 cites W3045791764 @default.
- W4308472103 cites W3092218908 @default.
- W4308472103 cites W3093266035 @default.
- W4308472103 cites W3120636658 @default.
- W4308472103 cites W3147042192 @default.
- W4308472103 cites W3162197382 @default.
- W4308472103 cites W3164555022 @default.
- W4308472103 cites W3165430695 @default.
- W4308472103 cites W3169361783 @default.
- W4308472103 cites W3185350766 @default.
- W4308472103 cites W3187046764 @default.
- W4308472103 cites W3200291761 @default.
- W4308472103 cites W3208903344 @default.
- W4308472103 cites W4213048661 @default.
- W4308472103 cites W4294741251 @default.
- W4308472103 doi "https://doi.org/10.1016/j.matpr.2022.10.266" @default.
- W4308472103 hasPublicationYear "2023" @default.
- W4308472103 type Work @default.
- W4308472103 citedByCount "2" @default.
- W4308472103 countsByYear W43084721032023 @default.
- W4308472103 crossrefType "journal-article" @default.
- W4308472103 hasAuthorship W4308472103A5008976923 @default.
- W4308472103 hasAuthorship W4308472103A5038498632 @default.
- W4308472103 hasAuthorship W4308472103A5050396774 @default.
- W4308472103 hasAuthorship W4308472103A5089262599 @default.
- W4308472103 hasAuthorship W4308472103A5090122757 @default.
- W4308472103 hasConcept C127413603 @default.
- W4308472103 hasConcept C154945302 @default.
- W4308472103 hasConcept C191897082 @default.
- W4308472103 hasConcept C192562407 @default.
- W4308472103 hasConcept C19474535 @default.
- W4308472103 hasConcept C20480867 @default.
- W4308472103 hasConcept C2780957350 @default.
- W4308472103 hasConcept C3450827 @default.
- W4308472103 hasConcept C36456112 @default.
- W4308472103 hasConcept C41008148 @default.
- W4308472103 hasConcept C50644808 @default.
- W4308472103 hasConcept C58166 @default.
- W4308472103 hasConcept C78519656 @default.
- W4308472103 hasConceptScore W4308472103C127413603 @default.
- W4308472103 hasConceptScore W4308472103C154945302 @default.
- W4308472103 hasConceptScore W4308472103C191897082 @default.
- W4308472103 hasConceptScore W4308472103C192562407 @default.
- W4308472103 hasConceptScore W4308472103C19474535 @default.
- W4308472103 hasConceptScore W4308472103C20480867 @default.
- W4308472103 hasConceptScore W4308472103C2780957350 @default.
- W4308472103 hasConceptScore W4308472103C3450827 @default.
- W4308472103 hasConceptScore W4308472103C36456112 @default.
- W4308472103 hasConceptScore W4308472103C41008148 @default.
- W4308472103 hasConceptScore W4308472103C50644808 @default.
- W4308472103 hasConceptScore W4308472103C58166 @default.
- W4308472103 hasConceptScore W4308472103C78519656 @default.
- W4308472103 hasLocation W43084721031 @default.
- W4308472103 hasOpenAccess W4308472103 @default.
- W4308472103 hasPrimaryLocation W43084721031 @default.
- W4308472103 hasRelatedWork W1980572019 @default.
- W4308472103 hasRelatedWork W2287929894 @default.
- W4308472103 hasRelatedWork W2351987946 @default.
- W4308472103 hasRelatedWork W2373628957 @default.
- W4308472103 hasRelatedWork W2378773533 @default.
- W4308472103 hasRelatedWork W2386890856 @default.
- W4308472103 hasRelatedWork W2389453758 @default.