Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308481729> ?p ?o ?g. }
- W4308481729 abstract "The solution of gauge theories is one of the most promising applications of quantum technologies. Here, we discuss the approach to the continuum limit for $U(1)$ gauge theories regularized via finite-dimensional Hilbert spaces of quantum spin-$S$ operators, known as quantum link models. For quantum electrodynamics (QED) in one spatial dimension, we numerically demonstrate the continuum limit by extrapolating the ground state energy, the scalar, and the vector meson masses to large spin lengths $S$, large volume $N$, and vanishing lattice spacing $a$. By exactly solving Gauss' law for arbitrary $S$, we obtain a generalized PXP spin model and count the physical Hilbert space dimension analytically. This allows us to quantify the required resources for reliable extrapolations to the continuum limit on quantum devices. We use a functional integral approach to relate the model with large values of half-integer spins to the physics at topological angle $Theta=pi$. Our findings indicate that quantum devices will in the foreseeable future be able to quantitatively probe the QED regime with quantum link models." @default.
- W4308481729 created "2022-11-12" @default.
- W4308481729 creator A5033082290 @default.
- W4308481729 creator A5042430441 @default.
- W4308481729 creator A5048762720 @default.
- W4308481729 creator A5049062960 @default.
- W4308481729 creator A5088713508 @default.
- W4308481729 date "2022-11-03" @default.
- W4308481729 modified "2023-10-14" @default.
- W4308481729 title "Toward the continuum limit of a <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mrow><mml:mo stretchy=false>(</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=false>)</mml:mo><mml:mi mathvariant=normal>D</mml:mi></mml:mrow></mml:math> quantum link Schwinger model" @default.
- W4308481729 cites W1858858833 @default.
- W4308481729 cites W1963939684 @default.
- W4308481729 cites W1965435266 @default.
- W4308481729 cites W1980222600 @default.
- W4308481729 cites W1989818853 @default.
- W4308481729 cites W1997236777 @default.
- W4308481729 cites W2002598362 @default.
- W4308481729 cites W2011306053 @default.
- W4308481729 cites W2016440527 @default.
- W4308481729 cites W2018384326 @default.
- W4308481729 cites W2027330396 @default.
- W4308481729 cites W2028454765 @default.
- W4308481729 cites W2034281197 @default.
- W4308481729 cites W2038591556 @default.
- W4308481729 cites W2043684123 @default.
- W4308481729 cites W2055025419 @default.
- W4308481729 cites W2055594733 @default.
- W4308481729 cites W2056448235 @default.
- W4308481729 cites W2056511881 @default.
- W4308481729 cites W2057341444 @default.
- W4308481729 cites W2062864367 @default.
- W4308481729 cites W2087482158 @default.
- W4308481729 cites W2089264389 @default.
- W4308481729 cites W2089547815 @default.
- W4308481729 cites W2090564176 @default.
- W4308481729 cites W2093995600 @default.
- W4308481729 cites W2097780038 @default.
- W4308481729 cites W2160049695 @default.
- W4308481729 cites W2337945857 @default.
- W4308481729 cites W2394549188 @default.
- W4308481729 cites W2581056149 @default.
- W4308481729 cites W2594450222 @default.
- W4308481729 cites W2726573634 @default.
- W4308481729 cites W2735457220 @default.
- W4308481729 cites W2767036532 @default.
- W4308481729 cites W2779980369 @default.
- W4308481729 cites W2794902311 @default.
- W4308481729 cites W2796002198 @default.
- W4308481729 cites W2796335521 @default.
- W4308481729 cites W2798125060 @default.
- W4308481729 cites W2810501214 @default.
- W4308481729 cites W2810624092 @default.
- W4308481729 cites W2884727803 @default.
- W4308481729 cites W2897256113 @default.
- W4308481729 cites W2899668578 @default.
- W4308481729 cites W2901601408 @default.
- W4308481729 cites W2902790528 @default.
- W4308481729 cites W2947075885 @default.
- W4308481729 cites W2955693155 @default.
- W4308481729 cites W2962850430 @default.
- W4308481729 cites W2963392570 @default.
- W4308481729 cites W2974201057 @default.
- W4308481729 cites W2974458447 @default.
- W4308481729 cites W2998626288 @default.
- W4308481729 cites W3009681727 @default.
- W4308481729 cites W3009952673 @default.
- W4308481729 cites W3010816250 @default.
- W4308481729 cites W3025003239 @default.
- W4308481729 cites W3037443854 @default.
- W4308481729 cites W3046716817 @default.
- W4308481729 cites W3047586719 @default.
- W4308481729 cites W3080935772 @default.
- W4308481729 cites W3098320405 @default.
- W4308481729 cites W3098479653 @default.
- W4308481729 cites W3099451552 @default.
- W4308481729 cites W3100057555 @default.
- W4308481729 cites W3101626761 @default.
- W4308481729 cites W3101721439 @default.
- W4308481729 cites W3102898748 @default.
- W4308481729 cites W3105042770 @default.
- W4308481729 cites W3105228778 @default.
- W4308481729 cites W3105335256 @default.
- W4308481729 cites W3106443493 @default.
- W4308481729 cites W3108007183 @default.
- W4308481729 cites W3125454023 @default.
- W4308481729 cites W3154031057 @default.
- W4308481729 cites W3156367219 @default.
- W4308481729 cites W3189250281 @default.
- W4308481729 cites W3194756826 @default.
- W4308481729 cites W3201545989 @default.
- W4308481729 cites W3201712637 @default.
- W4308481729 cites W3208265621 @default.
- W4308481729 cites W3212101168 @default.
- W4308481729 cites W4206523673 @default.
- W4308481729 cites W4280601232 @default.
- W4308481729 cites W4281735767 @default.
- W4308481729 cites W4301193685 @default.
- W4308481729 doi "https://doi.org/10.1103/physrevd.106.l091502" @default.
- W4308481729 hasPublicationYear "2022" @default.
- W4308481729 type Work @default.