Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308482435> ?p ?o ?g. }
- W4308482435 endingPage "18545" @default.
- W4308482435 startingPage "18520" @default.
- W4308482435 abstract "In the present study, three widely used modeling approaches: (1) sediment rating curve (SRC) and optimized OSRC, (2) machine learning models (ML) (random forest (RF) and Dagging-RF (DA-RF)) and (3) the semi-physically based soil and water assessment tool (SWAT) are applied to predict suspended sediment load (Qs) at the Talar watershed in Iran. Various graphical and quantitative methods were used to evaluate the goodness of fit. Results indicated that the RF model had the best prediction power in the training phase, while the dagging-RF hybrid algorithm outperformed all other models in the validation phase. The OSRC, RF and DA-RF had ‘very good’ performances based on the NSE in the validation phase, SRC showed ‘good’ performance, while the predicted values using SWAT were ‘satisfactory’. Our results suggest that the OSRC and ML models are more suitable for prediction of Qs in study catchments with poor data availability." @default.
- W4308482435 created "2022-11-12" @default.
- W4308482435 creator A5016190617 @default.
- W4308482435 creator A5018443362 @default.
- W4308482435 creator A5050922013 @default.
- W4308482435 creator A5051990895 @default.
- W4308482435 creator A5083514118 @default.
- W4308482435 date "2022-11-20" @default.
- W4308482435 modified "2023-09-30" @default.
- W4308482435 title "Model identification and accuracy for estimation of suspended sediment load" @default.
- W4308482435 cites W1060464084 @default.
- W4308482435 cites W1551093938 @default.
- W4308482435 cites W1964396812 @default.
- W4308482435 cites W1974452437 @default.
- W4308482435 cites W1983724666 @default.
- W4308482435 cites W1995993205 @default.
- W4308482435 cites W2005072756 @default.
- W4308482435 cites W2026002268 @default.
- W4308482435 cites W2026032760 @default.
- W4308482435 cites W2037460094 @default.
- W4308482435 cites W2038934430 @default.
- W4308482435 cites W2039169125 @default.
- W4308482435 cites W2044825305 @default.
- W4308482435 cites W2058998445 @default.
- W4308482435 cites W2059646894 @default.
- W4308482435 cites W2074021711 @default.
- W4308482435 cites W2084491972 @default.
- W4308482435 cites W2088755859 @default.
- W4308482435 cites W2090137585 @default.
- W4308482435 cites W2104609361 @default.
- W4308482435 cites W2106693625 @default.
- W4308482435 cites W2116404750 @default.
- W4308482435 cites W2128003492 @default.
- W4308482435 cites W2148224539 @default.
- W4308482435 cites W2150062755 @default.
- W4308482435 cites W2160092465 @default.
- W4308482435 cites W2530563849 @default.
- W4308482435 cites W2703863477 @default.
- W4308482435 cites W2765907903 @default.
- W4308482435 cites W2793974136 @default.
- W4308482435 cites W2796214114 @default.
- W4308482435 cites W2808724894 @default.
- W4308482435 cites W2809502325 @default.
- W4308482435 cites W2892289985 @default.
- W4308482435 cites W2897565907 @default.
- W4308482435 cites W2900233077 @default.
- W4308482435 cites W2911964244 @default.
- W4308482435 cites W2914769090 @default.
- W4308482435 cites W2943165315 @default.
- W4308482435 cites W2963907314 @default.
- W4308482435 cites W3042464261 @default.
- W4308482435 cites W3096893347 @default.
- W4308482435 cites W3159598116 @default.
- W4308482435 cites W3176053858 @default.
- W4308482435 cites W4210949798 @default.
- W4308482435 cites W4229453009 @default.
- W4308482435 cites W4249047679 @default.
- W4308482435 cites W4251800481 @default.
- W4308482435 cites W4281476148 @default.
- W4308482435 doi "https://doi.org/10.1080/10106049.2022.2142964" @default.
- W4308482435 hasPublicationYear "2022" @default.
- W4308482435 type Work @default.
- W4308482435 citedByCount "2" @default.
- W4308482435 countsByYear W43084824352023 @default.
- W4308482435 crossrefType "journal-article" @default.
- W4308482435 hasAuthorship W4308482435A5016190617 @default.
- W4308482435 hasAuthorship W4308482435A5018443362 @default.
- W4308482435 hasAuthorship W4308482435A5050922013 @default.
- W4308482435 hasAuthorship W4308482435A5051990895 @default.
- W4308482435 hasAuthorship W4308482435A5083514118 @default.
- W4308482435 hasConcept C114793014 @default.
- W4308482435 hasConcept C116834253 @default.
- W4308482435 hasConcept C119857082 @default.
- W4308482435 hasConcept C126645576 @default.
- W4308482435 hasConcept C127313418 @default.
- W4308482435 hasConcept C127413603 @default.
- W4308482435 hasConcept C150547873 @default.
- W4308482435 hasConcept C169258074 @default.
- W4308482435 hasConcept C187320778 @default.
- W4308482435 hasConcept C18903297 @default.
- W4308482435 hasConcept C205649164 @default.
- W4308482435 hasConcept C2780852570 @default.
- W4308482435 hasConcept C2816523 @default.
- W4308482435 hasConcept C39432304 @default.
- W4308482435 hasConcept C41008148 @default.
- W4308482435 hasConcept C53739315 @default.
- W4308482435 hasConcept C58640448 @default.
- W4308482435 hasConcept C62649853 @default.
- W4308482435 hasConcept C76886044 @default.
- W4308482435 hasConcept C86803240 @default.
- W4308482435 hasConcept C87027312 @default.
- W4308482435 hasConceptScore W4308482435C114793014 @default.
- W4308482435 hasConceptScore W4308482435C116834253 @default.
- W4308482435 hasConceptScore W4308482435C119857082 @default.
- W4308482435 hasConceptScore W4308482435C126645576 @default.
- W4308482435 hasConceptScore W4308482435C127313418 @default.
- W4308482435 hasConceptScore W4308482435C127413603 @default.
- W4308482435 hasConceptScore W4308482435C150547873 @default.