Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308483796> ?p ?o ?g. }
- W4308483796 endingPage "e01423" @default.
- W4308483796 startingPage "e01423" @default.
- W4308483796 abstract "Remote sensing provides cost-effective and unbiased data and thus is ideal for assessing climate–vegetation relationships. Such relationships can be quantified using geographically weighted regression (GWR) approach to account for variations of the relationships across space. This approach was applied in the Eastern Cape province of South Africa that is rich in biodiversity hosting 10 of the country's 11 biomes. The study aimed to determine if the GWR accuracy for relating Enhanced Vegetation Index (EVI) with rainfall and Land Surface Temperature (LST) shows an optimal pattern with time and space. and to explore if the correlation of EVI with rainfall and LST varies with biome type. Monthly data covering February 2000 to December 2017 were used for the three variables. The coefficient of determination (R2) was greater than 0.5 for 75% of the locations, with month-to-month change of R2 exceeding 25% for many locations. Optimized Hot Spot Analysis returned well-defined broad clusters of high and low R2 values separated by clusters of randomly distributed R2 values. These clusters shifted with month, further stressing the benefit of modelling at the monthly scale. Assessment of R2 by biome showed the importance of biomes in characterizing GWR of climate and vegetation, with better correlations found in low biodiversity (Succulent Karoo and Nama-Karoo biomes) than in higher biodiversity (Forest and Indian Ocean Coastal Belt biomes) zones. Further, the estimation residuals of the Forest Biome varied significantly from 3 to 5 other biomes across the year indicating the complex interaction of this biome with rainfall and LST. The study encourages further research by using high temporal resolution data for detailed monitoring within the GWR framework." @default.
- W4308483796 created "2022-11-12" @default.
- W4308483796 creator A5070581290 @default.
- W4308483796 creator A5073684758 @default.
- W4308483796 creator A5088562888 @default.
- W4308483796 date "2022-11-01" @default.
- W4308483796 modified "2023-09-30" @default.
- W4308483796 title "Monthly geographically weighted regression between climate and vegetation in the Eastern Cape Province of South Africa: Clustering pattern shifts and biome-dependent accuracies" @default.
- W4308483796 cites W1897932246 @default.
- W4308483796 cites W1980595709 @default.
- W4308483796 cites W1986163103 @default.
- W4308483796 cites W2039361154 @default.
- W4308483796 cites W2067976349 @default.
- W4308483796 cites W2075042600 @default.
- W4308483796 cites W2113410727 @default.
- W4308483796 cites W2131586477 @default.
- W4308483796 cites W2148169128 @default.
- W4308483796 cites W2150280378 @default.
- W4308483796 cites W2152092242 @default.
- W4308483796 cites W2261645655 @default.
- W4308483796 cites W2320370918 @default.
- W4308483796 cites W2347496357 @default.
- W4308483796 cites W2482892996 @default.
- W4308483796 cites W2531944626 @default.
- W4308483796 cites W2602208230 @default.
- W4308483796 cites W2620868963 @default.
- W4308483796 cites W2724305636 @default.
- W4308483796 cites W2759754050 @default.
- W4308483796 cites W2810038931 @default.
- W4308483796 cites W2884965062 @default.
- W4308483796 cites W2896061162 @default.
- W4308483796 cites W2898607579 @default.
- W4308483796 cites W2913145008 @default.
- W4308483796 cites W2914483764 @default.
- W4308483796 cites W2948613401 @default.
- W4308483796 cites W2981062943 @default.
- W4308483796 cites W2986209085 @default.
- W4308483796 cites W3008846876 @default.
- W4308483796 cites W3011446816 @default.
- W4308483796 cites W3017078357 @default.
- W4308483796 cites W3036207951 @default.
- W4308483796 cites W3049119755 @default.
- W4308483796 cites W3111973006 @default.
- W4308483796 cites W3125658497 @default.
- W4308483796 cites W3144229804 @default.
- W4308483796 cites W3154116753 @default.
- W4308483796 cites W3180936428 @default.
- W4308483796 cites W3197994059 @default.
- W4308483796 cites W3212702016 @default.
- W4308483796 cites W3216467057 @default.
- W4308483796 cites W4224310792 @default.
- W4308483796 doi "https://doi.org/10.1016/j.sciaf.2022.e01423" @default.
- W4308483796 hasPublicationYear "2022" @default.
- W4308483796 type Work @default.
- W4308483796 citedByCount "0" @default.
- W4308483796 crossrefType "journal-article" @default.
- W4308483796 hasAuthorship W4308483796A5070581290 @default.
- W4308483796 hasAuthorship W4308483796A5073684758 @default.
- W4308483796 hasAuthorship W4308483796A5088562888 @default.
- W4308483796 hasBestOaLocation W43084837961 @default.
- W4308483796 hasConcept C100970517 @default.
- W4308483796 hasConcept C110872660 @default.
- W4308483796 hasConcept C127313418 @default.
- W4308483796 hasConcept C130217890 @default.
- W4308483796 hasConcept C132651083 @default.
- W4308483796 hasConcept C142724271 @default.
- W4308483796 hasConcept C153427425 @default.
- W4308483796 hasConcept C1549246 @default.
- W4308483796 hasConcept C166957645 @default.
- W4308483796 hasConcept C18903297 @default.
- W4308483796 hasConcept C205649164 @default.
- W4308483796 hasConcept C2776133958 @default.
- W4308483796 hasConcept C2777628658 @default.
- W4308483796 hasConcept C39432304 @default.
- W4308483796 hasConcept C49204034 @default.
- W4308483796 hasConcept C71924100 @default.
- W4308483796 hasConcept C86803240 @default.
- W4308483796 hasConcept C89920630 @default.
- W4308483796 hasConceptScore W4308483796C100970517 @default.
- W4308483796 hasConceptScore W4308483796C110872660 @default.
- W4308483796 hasConceptScore W4308483796C127313418 @default.
- W4308483796 hasConceptScore W4308483796C130217890 @default.
- W4308483796 hasConceptScore W4308483796C132651083 @default.
- W4308483796 hasConceptScore W4308483796C142724271 @default.
- W4308483796 hasConceptScore W4308483796C153427425 @default.
- W4308483796 hasConceptScore W4308483796C1549246 @default.
- W4308483796 hasConceptScore W4308483796C166957645 @default.
- W4308483796 hasConceptScore W4308483796C18903297 @default.
- W4308483796 hasConceptScore W4308483796C205649164 @default.
- W4308483796 hasConceptScore W4308483796C2776133958 @default.
- W4308483796 hasConceptScore W4308483796C2777628658 @default.
- W4308483796 hasConceptScore W4308483796C39432304 @default.
- W4308483796 hasConceptScore W4308483796C49204034 @default.
- W4308483796 hasConceptScore W4308483796C71924100 @default.
- W4308483796 hasConceptScore W4308483796C86803240 @default.
- W4308483796 hasConceptScore W4308483796C89920630 @default.
- W4308483796 hasFunder F4320323959 @default.
- W4308483796 hasLocation W43084837961 @default.