Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308484879> ?p ?o ?g. }
- W4308484879 endingPage "41743" @default.
- W4308484879 startingPage "41732" @default.
- W4308484879 abstract "At present, regression modeling methods fail to achieve higher simulation accuracy, which limits the application of simulation technology in more fields such as virtual calibration and hardware-in-the-loop real-time simulation in automotive industry. After fully considering the abruptness and complexity of engine predictions, a Gaussian process regression modeling method based on a combined kernel function is proposed and verified in this study for engine torque, emission, and temperature predictions. The comparison results with linear regression, decision tree, support vector machine (abbreviated as SVM), neural network, and other Gaussian regression methods show that the Gaussian regression method based on the combined kernel function proposed in this study can achieve higher prediction accuracy. Fitting results show that the R2 value of engine torque and exhaust gas temperature after the engine turbo (abbreviated as T4) prediction model reaches 1.00, and the R2 value of the nitrogen oxide (abbreviated as NOx) prediction model reaches 0.9999. The model generalization ability verification test results show that for a totally new world harmonized transient cycle data, the R2 value of engine torque prediction is 0.9993, the R2 value of exhaust gas temperature is 0.995, and the R2 value of NOx emission prediction result is 0.9962. The results of model generalization ability verification show that the model can achieve high prediction accuracy for performance prediction, temperature prediction, and emission prediction under steady-state and transient operating conditions." @default.
- W4308484879 created "2022-11-12" @default.
- W4308484879 creator A5043384044 @default.
- W4308484879 creator A5048558224 @default.
- W4308484879 creator A5072907125 @default.
- W4308484879 creator A5073607494 @default.
- W4308484879 date "2022-11-03" @default.
- W4308484879 modified "2023-10-06" @default.
- W4308484879 title "Application of the Gaussian Process Regression Method Based on a Combined Kernel Function in Engine Performance Prediction" @default.
- W4308484879 cites W1502922572 @default.
- W4308484879 cites W2013663742 @default.
- W4308484879 cites W2015012583 @default.
- W4308484879 cites W2033162725 @default.
- W4308484879 cites W2123974549 @default.
- W4308484879 cites W2517466686 @default.
- W4308484879 cites W2592325411 @default.
- W4308484879 cites W2781310309 @default.
- W4308484879 cites W2900729111 @default.
- W4308484879 cites W2971342653 @default.
- W4308484879 cites W2976476837 @default.
- W4308484879 cites W3005783773 @default.
- W4308484879 cites W3012669251 @default.
- W4308484879 cites W3029678843 @default.
- W4308484879 cites W3043899531 @default.
- W4308484879 cites W3046120908 @default.
- W4308484879 cites W3199846557 @default.
- W4308484879 cites W3203800784 @default.
- W4308484879 cites W3204397698 @default.
- W4308484879 cites W3207279771 @default.
- W4308484879 cites W3215806251 @default.
- W4308484879 doi "https://doi.org/10.1021/acsomega.2c05952" @default.
- W4308484879 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36406511" @default.
- W4308484879 hasPublicationYear "2022" @default.
- W4308484879 type Work @default.
- W4308484879 citedByCount "7" @default.
- W4308484879 countsByYear W43084848792023 @default.
- W4308484879 crossrefType "journal-article" @default.
- W4308484879 hasAuthorship W4308484879A5043384044 @default.
- W4308484879 hasAuthorship W4308484879A5048558224 @default.
- W4308484879 hasAuthorship W4308484879A5072907125 @default.
- W4308484879 hasAuthorship W4308484879A5073607494 @default.
- W4308484879 hasBestOaLocation W43084848791 @default.
- W4308484879 hasConcept C11413529 @default.
- W4308484879 hasConcept C114614502 @default.
- W4308484879 hasConcept C119857082 @default.
- W4308484879 hasConcept C121332964 @default.
- W4308484879 hasConcept C12267149 @default.
- W4308484879 hasConcept C127413603 @default.
- W4308484879 hasConcept C134306372 @default.
- W4308484879 hasConcept C163716315 @default.
- W4308484879 hasConcept C177148314 @default.
- W4308484879 hasConcept C2777115002 @default.
- W4308484879 hasConcept C33923547 @default.
- W4308484879 hasConcept C41008148 @default.
- W4308484879 hasConcept C44154836 @default.
- W4308484879 hasConcept C50644808 @default.
- W4308484879 hasConcept C61326573 @default.
- W4308484879 hasConcept C62520636 @default.
- W4308484879 hasConcept C7218915 @default.
- W4308484879 hasConcept C74193536 @default.
- W4308484879 hasConcept C81692654 @default.
- W4308484879 hasConceptScore W4308484879C11413529 @default.
- W4308484879 hasConceptScore W4308484879C114614502 @default.
- W4308484879 hasConceptScore W4308484879C119857082 @default.
- W4308484879 hasConceptScore W4308484879C121332964 @default.
- W4308484879 hasConceptScore W4308484879C12267149 @default.
- W4308484879 hasConceptScore W4308484879C127413603 @default.
- W4308484879 hasConceptScore W4308484879C134306372 @default.
- W4308484879 hasConceptScore W4308484879C163716315 @default.
- W4308484879 hasConceptScore W4308484879C177148314 @default.
- W4308484879 hasConceptScore W4308484879C2777115002 @default.
- W4308484879 hasConceptScore W4308484879C33923547 @default.
- W4308484879 hasConceptScore W4308484879C41008148 @default.
- W4308484879 hasConceptScore W4308484879C44154836 @default.
- W4308484879 hasConceptScore W4308484879C50644808 @default.
- W4308484879 hasConceptScore W4308484879C61326573 @default.
- W4308484879 hasConceptScore W4308484879C62520636 @default.
- W4308484879 hasConceptScore W4308484879C7218915 @default.
- W4308484879 hasConceptScore W4308484879C74193536 @default.
- W4308484879 hasConceptScore W4308484879C81692654 @default.
- W4308484879 hasIssue "45" @default.
- W4308484879 hasLocation W43084848791 @default.
- W4308484879 hasLocation W43084848792 @default.
- W4308484879 hasLocation W43084848793 @default.
- W4308484879 hasOpenAccess W4308484879 @default.
- W4308484879 hasPrimaryLocation W43084848791 @default.
- W4308484879 hasRelatedWork W1979857262 @default.
- W4308484879 hasRelatedWork W2042180481 @default.
- W4308484879 hasRelatedWork W2773995641 @default.
- W4308484879 hasRelatedWork W3197566623 @default.
- W4308484879 hasRelatedWork W3215147392 @default.
- W4308484879 hasRelatedWork W3217770377 @default.
- W4308484879 hasRelatedWork W4225835446 @default.
- W4308484879 hasRelatedWork W4292491722 @default.
- W4308484879 hasRelatedWork W4311866757 @default.
- W4308484879 hasRelatedWork W4312290701 @default.
- W4308484879 hasVolume "7" @default.
- W4308484879 isParatext "false" @default.