Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308487114> ?p ?o ?g. }
- W4308487114 endingPage "155342" @default.
- W4308487114 startingPage "155342" @default.
- W4308487114 abstract "Background and aims Analyses to predict the risk of cancer typically focus on single biomarkers, which do not capture their complex interrelations. We hypothesized that the use of metabolic profiles may provide new insights into cancer prediction. Methods We used information from 290,888 UK Biobank participants aged 37 to 73 years at baseline. Metabolic subgroups were defined based on clustering of biochemical data using an artificial neural network approach and examined for their association with incident cancers identified through linkage to cancer registry. In addition, we evaluated associations between 38 individual biomarkers and cancer risk. Results In total, 21,973 individuals developed cancer during the follow-up (median 3.87 years, interquartile range [IQR] = 2.03–5.58). Compared to the metabolically favorable subgroup (IV), subgroup III (defined as “high BMI, C-reactive protein & cystatin C) was associated with a higher risk of obesity-related cancers (hazard ratio [HR] = 1.26, 95 % CI = 1.21 to 1.32) and hematologic-malignancies (e.g., lymphoid leukemia: HR = 1.83, 95%CI = 1.44 to 2.33). Subgroup II (“high triglycerides & liver enzymes”) was strongly associated with liver cancer risk (HR = 5.70, 95%CI = 3.57 to 9.11). Analysis of individual biomarkers showed a positive association between testosterone and greater risks of hormone-sensitive cancers (HR per SD higher = 1.32, 95%CI = 1.23 to 1.44), and liver cancer (HR = 2.49, 95%CI =1.47 to 4.24). Many liver tests were individually associated with a greater risk of liver cancer with the strongest association observed for gamma-glutamyl transferase (HR = 2.40, 95%CI = 2.19 to 2.65). Conclusions Metabolic profile in middle-to-older age can predict cancer incidence, in particular risk of obesity-related cancer, hematologic malignancies, and liver cancer. Elevated values from liver tests are strong predictors for later risk of liver cancer." @default.
- W4308487114 created "2022-11-12" @default.
- W4308487114 creator A5011232720 @default.
- W4308487114 creator A5021090487 @default.
- W4308487114 creator A5026971838 @default.
- W4308487114 creator A5035454105 @default.
- W4308487114 creator A5040887607 @default.
- W4308487114 creator A5042862791 @default.
- W4308487114 creator A5046162660 @default.
- W4308487114 creator A5056048160 @default.
- W4308487114 date "2023-01-01" @default.
- W4308487114 modified "2023-10-17" @default.
- W4308487114 title "Metabolic profile predicts incident cancer: A large-scale population study in the UK Biobank" @default.
- W4308487114 cites W1914193268 @default.
- W4308487114 cites W1968860872 @default.
- W4308487114 cites W1969295126 @default.
- W4308487114 cites W1978794209 @default.
- W4308487114 cites W1980437893 @default.
- W4308487114 cites W1989619485 @default.
- W4308487114 cites W2001837599 @default.
- W4308487114 cites W2016530319 @default.
- W4308487114 cites W2022430992 @default.
- W4308487114 cites W2034935327 @default.
- W4308487114 cites W2045072263 @default.
- W4308487114 cites W2053435298 @default.
- W4308487114 cites W2054877457 @default.
- W4308487114 cites W2061890286 @default.
- W4308487114 cites W2078801481 @default.
- W4308487114 cites W2081928176 @default.
- W4308487114 cites W2082184791 @default.
- W4308487114 cites W2082704080 @default.
- W4308487114 cites W2095866442 @default.
- W4308487114 cites W2111946630 @default.
- W4308487114 cites W2117968640 @default.
- W4308487114 cites W2118638097 @default.
- W4308487114 cites W2124965119 @default.
- W4308487114 cites W2126772810 @default.
- W4308487114 cites W2127502027 @default.
- W4308487114 cites W2133913866 @default.
- W4308487114 cites W2134550081 @default.
- W4308487114 cites W2136057321 @default.
- W4308487114 cites W2136795008 @default.
- W4308487114 cites W2141662760 @default.
- W4308487114 cites W2416706269 @default.
- W4308487114 cites W2530620716 @default.
- W4308487114 cites W2609007932 @default.
- W4308487114 cites W2723723801 @default.
- W4308487114 cites W2758760080 @default.
- W4308487114 cites W2764290585 @default.
- W4308487114 cites W2770965588 @default.
- W4308487114 cites W2793521515 @default.
- W4308487114 cites W2795908850 @default.
- W4308487114 cites W2866450277 @default.
- W4308487114 cites W2895464723 @default.
- W4308487114 cites W2900847413 @default.
- W4308487114 cites W2908320623 @default.
- W4308487114 cites W2942558296 @default.
- W4308487114 cites W2945907599 @default.
- W4308487114 cites W2969278114 @default.
- W4308487114 cites W2993700854 @default.
- W4308487114 cites W3009530014 @default.
- W4308487114 cites W3017000889 @default.
- W4308487114 cites W3099566937 @default.
- W4308487114 cites W3120515803 @default.
- W4308487114 cites W3128646645 @default.
- W4308487114 cites W3158132561 @default.
- W4308487114 cites W3183629738 @default.
- W4308487114 cites W3195696875 @default.
- W4308487114 cites W3212865367 @default.
- W4308487114 cites W4210774372 @default.
- W4308487114 cites W4211025847 @default.
- W4308487114 cites W4281257852 @default.
- W4308487114 doi "https://doi.org/10.1016/j.metabol.2022.155342" @default.
- W4308487114 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36377121" @default.
- W4308487114 hasPublicationYear "2023" @default.
- W4308487114 type Work @default.
- W4308487114 citedByCount "3" @default.
- W4308487114 countsByYear W43084871142023 @default.
- W4308487114 crossrefType "journal-article" @default.
- W4308487114 hasAuthorship W4308487114A5011232720 @default.
- W4308487114 hasAuthorship W4308487114A5021090487 @default.
- W4308487114 hasAuthorship W4308487114A5026971838 @default.
- W4308487114 hasAuthorship W4308487114A5035454105 @default.
- W4308487114 hasAuthorship W4308487114A5040887607 @default.
- W4308487114 hasAuthorship W4308487114A5042862791 @default.
- W4308487114 hasAuthorship W4308487114A5046162660 @default.
- W4308487114 hasAuthorship W4308487114A5056048160 @default.
- W4308487114 hasConcept C119060515 @default.
- W4308487114 hasConcept C121608353 @default.
- W4308487114 hasConcept C126322002 @default.
- W4308487114 hasConcept C143998085 @default.
- W4308487114 hasConcept C156957248 @default.
- W4308487114 hasConcept C207103383 @default.
- W4308487114 hasConcept C2776231280 @default.
- W4308487114 hasConcept C2908647359 @default.
- W4308487114 hasConcept C44249647 @default.
- W4308487114 hasConcept C71924100 @default.
- W4308487114 hasConcept C99454951 @default.