Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308487743> ?p ?o ?g. }
- W4308487743 endingPage "125943" @default.
- W4308487743 startingPage "125943" @default.
- W4308487743 abstract "Timely and accurate fault diagnosis (FD) in building energy systems (BESs) can promote energy efficiency and sustainable development. Especially the heating, ventilating, and air-conditioning (HVAC) systems are diverse and operate under complex and variable operation conditions. System and operation differences lead to great differences in operational data which causes poor adaptability of data-driven FD models that are developed using data from a single HVAC system or limited operation condition. To improve diagnostic performance across different HVAC systems and operation conditions, this study proposes high-adaptability FD models using three deep transfer learning (DTL) strategies including network-based fine-tuning (FT), mapping-based domain-adaptive neural network (DaNN) and adversarial-based domain adversarial neural network (DANN). The effectiveness of DTL-based FD is validated by fault datasets of two typical BESs: one is a 703-kW screw chiller while the other is the 316-kW centrifugal chiller from ASHRAE RP-1043. Two types of TL scenarios (cross-system and cross-operation-condition fault diagnosis) are set up consisting of eight TL tasks. For DTL strategies, both FD performance and transferability are evaluated using metrics like accuracy and accuracy improvement degree (AID). Results indicate that FT obtains 93% FD accuracy averagely for all tasks of the two TL scenarios considered, which is an average 55% AID compared with the non-transfer benchmark model convolutional neural network (CNN). Further, the impacts of source and target data volumes, and TL tasks are analyzed. For cross-operation-condition scenario, DTL-based FD accuracy grows with the increase of target data volume. For cross-system scenario, FT still show high FD performance with less training data. The reason why FT outperforms DANN and DaNN is explained by visualizing classification scatterplots of the last NN layers. Practical application issues of the DTL-based FD strategy for building energy systems are discussed at last." @default.
- W4308487743 created "2022-11-12" @default.
- W4308487743 creator A5009988341 @default.
- W4308487743 creator A5027865648 @default.
- W4308487743 creator A5040144696 @default.
- W4308487743 creator A5088560873 @default.
- W4308487743 date "2023-01-01" @default.
- W4308487743 modified "2023-09-30" @default.
- W4308487743 title "Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis" @default.
- W4308487743 cites W1847878491 @default.
- W4308487743 cites W2040192705 @default.
- W4308487743 cites W2077806872 @default.
- W4308487743 cites W2219842228 @default.
- W4308487743 cites W2573432606 @default.
- W4308487743 cites W2888785828 @default.
- W4308487743 cites W2896783485 @default.
- W4308487743 cites W2897209291 @default.
- W4308487743 cites W2907978107 @default.
- W4308487743 cites W2917083456 @default.
- W4308487743 cites W2936774193 @default.
- W4308487743 cites W2938041406 @default.
- W4308487743 cites W2938814897 @default.
- W4308487743 cites W2941834157 @default.
- W4308487743 cites W2942829360 @default.
- W4308487743 cites W2969591044 @default.
- W4308487743 cites W2998567984 @default.
- W4308487743 cites W2999491213 @default.
- W4308487743 cites W3002783982 @default.
- W4308487743 cites W3011342695 @default.
- W4308487743 cites W3015190124 @default.
- W4308487743 cites W3021412983 @default.
- W4308487743 cites W3048813124 @default.
- W4308487743 cites W3049495830 @default.
- W4308487743 cites W3087199467 @default.
- W4308487743 cites W3088659404 @default.
- W4308487743 cites W3092962315 @default.
- W4308487743 cites W3094159940 @default.
- W4308487743 cites W3120299959 @default.
- W4308487743 cites W3120631908 @default.
- W4308487743 cites W3131848660 @default.
- W4308487743 cites W3136172475 @default.
- W4308487743 cites W3138762281 @default.
- W4308487743 cites W3151786474 @default.
- W4308487743 cites W3154984436 @default.
- W4308487743 cites W3157059293 @default.
- W4308487743 cites W3174203890 @default.
- W4308487743 cites W3174700462 @default.
- W4308487743 cites W3181638476 @default.
- W4308487743 cites W3185246072 @default.
- W4308487743 cites W3186442101 @default.
- W4308487743 cites W3190284897 @default.
- W4308487743 cites W3193093051 @default.
- W4308487743 cites W3193741668 @default.
- W4308487743 cites W3199748762 @default.
- W4308487743 cites W3201064488 @default.
- W4308487743 cites W3206296014 @default.
- W4308487743 cites W3207646706 @default.
- W4308487743 cites W3209651137 @default.
- W4308487743 cites W4200380963 @default.
- W4308487743 cites W4200621962 @default.
- W4308487743 cites W4206085263 @default.
- W4308487743 cites W4206696802 @default.
- W4308487743 cites W4207081571 @default.
- W4308487743 cites W4210763500 @default.
- W4308487743 cites W4210824775 @default.
- W4308487743 cites W4213031805 @default.
- W4308487743 cites W4220780063 @default.
- W4308487743 cites W4220824196 @default.
- W4308487743 cites W4223985848 @default.
- W4308487743 cites W4226376401 @default.
- W4308487743 cites W4281491164 @default.
- W4308487743 doi "https://doi.org/10.1016/j.energy.2022.125943" @default.
- W4308487743 hasPublicationYear "2023" @default.
- W4308487743 type Work @default.
- W4308487743 citedByCount "12" @default.
- W4308487743 countsByYear W43084877432023 @default.
- W4308487743 crossrefType "journal-article" @default.
- W4308487743 hasAuthorship W4308487743A5009988341 @default.
- W4308487743 hasAuthorship W4308487743A5027865648 @default.
- W4308487743 hasAuthorship W4308487743A5040144696 @default.
- W4308487743 hasAuthorship W4308487743A5088560873 @default.
- W4308487743 hasConcept C103742991 @default.
- W4308487743 hasConcept C119857082 @default.
- W4308487743 hasConcept C121332964 @default.
- W4308487743 hasConcept C122346748 @default.
- W4308487743 hasConcept C127313418 @default.
- W4308487743 hasConcept C127413603 @default.
- W4308487743 hasConcept C131097465 @default.
- W4308487743 hasConcept C13280743 @default.
- W4308487743 hasConcept C150899416 @default.
- W4308487743 hasConcept C153294291 @default.
- W4308487743 hasConcept C154945302 @default.
- W4308487743 hasConcept C165205528 @default.
- W4308487743 hasConcept C175551986 @default.
- W4308487743 hasConcept C177606310 @default.
- W4308487743 hasConcept C182254935 @default.
- W4308487743 hasConcept C185798385 @default.
- W4308487743 hasConcept C18903297 @default.