Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308487881> ?p ?o ?g. }
- W4308487881 endingPage "105360" @default.
- W4308487881 startingPage "105360" @default.
- W4308487881 abstract "The deep sea refers to the parts of the oceans with a depth of more than 200 m, and it comprises the largest habitat on earth with the most abundant and diverse marine life. Human activities, such as deep-sea mining, fishing, and shipping, can have severe impacts on deep-sea species and habitats. With the development of the related equipment and technology, interest in deep-sea mining continues to rise; therefore, protecting the unique and fragile deep-sea marine ecosystem has become a global focus. Given the fragility of the deep-sea habitats and the growing demand for deep-sea resources, the United Nations established the International Seabed Authority (the ISA) in 1972, which represents everyone worldwide, to manage the mineral resources in the international seabed area (also known as “the Area”) while fulfilling environmental protection obligations. The most important objective of the regional environmental management plan (REMP) in the Area initiated by the ISA is to balance deep-sea mining and environment protection, and the ISA has considered numerous types of area-based management tools (ABMTs) in the development of the REMPs (Table 1). Using the different ABMTs, several key environmental areas or sites have been identified in various regions, such as the areas of particular environmental interest (APEIs), sites in need of protection (SINPs), or areas in need of protection (AINPs). Additionally, deep-sea mining is prohibited in these sites/areas to avoid its irrecoverable impact on the environment in the Area. The designation these environmental areas or sites can improve the function and resilience of the ecosystem and avoid the unrecoverable impact of deep-sea mining. In this study, we selected the international areas of the Northwest Pacific Ocean for a case study. In order to protect representative species and habitats, such as cold-water corals and seamounts, we utilized environmental factors to classify the study area into eight types of habitats. We then used the appropriate criteria to identify candidate AINPs in two scenarios with a large-scale spatial planning model and analyzed the differences in the protected proportion of the eight types of habitats. The results indicate that identifying the candidate AINPs can reach the protection target of approximately 30% of the area, and each representative species and habitat can be protected. The results obtained in this study can provide technical references for the implementation of REMPs and the designation of AINPs in the study area." @default.
- W4308487881 created "2022-11-12" @default.
- W4308487881 creator A5008049565 @default.
- W4308487881 creator A5016992398 @default.
- W4308487881 creator A5022942868 @default.
- W4308487881 creator A5040409657 @default.
- W4308487881 creator A5073216396 @default.
- W4308487881 creator A5077042148 @default.
- W4308487881 creator A5079123010 @default.
- W4308487881 creator A5090771735 @default.
- W4308487881 date "2023-01-01" @default.
- W4308487881 modified "2023-10-16" @default.
- W4308487881 title "Using habitat classification and large-scale spatial planning model to identify environmental areas: A case study in the area of the Northwest Pacific Ocean" @default.
- W4308487881 cites W1129256071 @default.
- W4308487881 cites W1493454437 @default.
- W4308487881 cites W1548542055 @default.
- W4308487881 cites W1581217299 @default.
- W4308487881 cites W1714244779 @default.
- W4308487881 cites W1759628393 @default.
- W4308487881 cites W1822542250 @default.
- W4308487881 cites W1856002889 @default.
- W4308487881 cites W1941503459 @default.
- W4308487881 cites W1986219634 @default.
- W4308487881 cites W1997537567 @default.
- W4308487881 cites W2003689118 @default.
- W4308487881 cites W2028672235 @default.
- W4308487881 cites W2033686454 @default.
- W4308487881 cites W2037139481 @default.
- W4308487881 cites W2039471024 @default.
- W4308487881 cites W2053713060 @default.
- W4308487881 cites W2061881615 @default.
- W4308487881 cites W2078741446 @default.
- W4308487881 cites W2081296091 @default.
- W4308487881 cites W2083956291 @default.
- W4308487881 cites W2105073200 @default.
- W4308487881 cites W2108207007 @default.
- W4308487881 cites W2137258492 @default.
- W4308487881 cites W2170121306 @default.
- W4308487881 cites W2413625889 @default.
- W4308487881 cites W2496838921 @default.
- W4308487881 cites W2529695194 @default.
- W4308487881 cites W2595660615 @default.
- W4308487881 cites W2675793291 @default.
- W4308487881 cites W2738213719 @default.
- W4308487881 cites W2791031454 @default.
- W4308487881 cites W2793125729 @default.
- W4308487881 cites W2810413605 @default.
- W4308487881 cites W2884225363 @default.
- W4308487881 cites W2884707988 @default.
- W4308487881 cites W2896124194 @default.
- W4308487881 cites W2905321122 @default.
- W4308487881 cites W2942976093 @default.
- W4308487881 cites W2963578014 @default.
- W4308487881 cites W2987815096 @default.
- W4308487881 cites W2988652345 @default.
- W4308487881 cites W3007365094 @default.
- W4308487881 cites W3044273226 @default.
- W4308487881 cites W3102922787 @default.
- W4308487881 cites W3111541870 @default.
- W4308487881 cites W4220926751 @default.
- W4308487881 cites W4255567354 @default.
- W4308487881 doi "https://doi.org/10.1016/j.marpol.2022.105360" @default.
- W4308487881 hasPublicationYear "2023" @default.
- W4308487881 type Work @default.
- W4308487881 citedByCount "0" @default.
- W4308487881 crossrefType "journal-article" @default.
- W4308487881 hasAuthorship W4308487881A5008049565 @default.
- W4308487881 hasAuthorship W4308487881A5016992398 @default.
- W4308487881 hasAuthorship W4308487881A5022942868 @default.
- W4308487881 hasAuthorship W4308487881A5040409657 @default.
- W4308487881 hasAuthorship W4308487881A5073216396 @default.
- W4308487881 hasAuthorship W4308487881A5077042148 @default.
- W4308487881 hasAuthorship W4308487881A5079123010 @default.
- W4308487881 hasAuthorship W4308487881A5090771735 @default.
- W4308487881 hasConcept C107826830 @default.
- W4308487881 hasConcept C110872660 @default.
- W4308487881 hasConcept C111368507 @default.
- W4308487881 hasConcept C127313418 @default.
- W4308487881 hasConcept C185933670 @default.
- W4308487881 hasConcept C18903297 @default.
- W4308487881 hasConcept C205649164 @default.
- W4308487881 hasConcept C21790881 @default.
- W4308487881 hasConcept C2780362636 @default.
- W4308487881 hasConcept C33613203 @default.
- W4308487881 hasConcept C39432304 @default.
- W4308487881 hasConcept C505870484 @default.
- W4308487881 hasConcept C514101110 @default.
- W4308487881 hasConcept C526734887 @default.
- W4308487881 hasConcept C86803240 @default.
- W4308487881 hasConceptScore W4308487881C107826830 @default.
- W4308487881 hasConceptScore W4308487881C110872660 @default.
- W4308487881 hasConceptScore W4308487881C111368507 @default.
- W4308487881 hasConceptScore W4308487881C127313418 @default.
- W4308487881 hasConceptScore W4308487881C185933670 @default.
- W4308487881 hasConceptScore W4308487881C18903297 @default.
- W4308487881 hasConceptScore W4308487881C205649164 @default.
- W4308487881 hasConceptScore W4308487881C21790881 @default.
- W4308487881 hasConceptScore W4308487881C2780362636 @default.