Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308488358> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4308488358 endingPage "100437" @default.
- W4308488358 startingPage "100437" @default.
- W4308488358 abstract "Python codes are provided for generating computer models of the skeletal muscle on all five hierarchical levels. All scripts are parametrized to generate a large variation of muscle structures. On hierarchical levels 3 (muscle fiber), 4 (fascicle) and 5 (muscle), we use Voronoi tessellation in combination with the sunflower seed arrangement to obtain fiber–matrix-composite models with similar-sized fibers having polygonal cross-sections. The muscle and its microstructure can be studied at a given length scale or in multiscale analysis. The codes provide the basis for a large variety of possible FEM simulations of different phenomena due to full parametrization and flexibility." @default.
- W4308488358 created "2022-11-12" @default.
- W4308488358 creator A5006885347 @default.
- W4308488358 creator A5040973496 @default.
- W4308488358 date "2022-12-01" @default.
- W4308488358 modified "2023-10-04" @default.
- W4308488358 title "Python codes to generate skeletal muscle models on each hierarchical level" @default.
- W4308488358 cites W1913048559 @default.
- W4308488358 cites W2023615360 @default.
- W4308488358 cites W2040798277 @default.
- W4308488358 cites W2045853437 @default.
- W4308488358 cites W2061210341 @default.
- W4308488358 cites W2072529314 @default.
- W4308488358 cites W2077404923 @default.
- W4308488358 cites W2103747691 @default.
- W4308488358 cites W2127737606 @default.
- W4308488358 cites W2165619702 @default.
- W4308488358 cites W2550757339 @default.
- W4308488358 cites W2624539949 @default.
- W4308488358 cites W2793598076 @default.
- W4308488358 cites W3174705242 @default.
- W4308488358 cites W4246118847 @default.
- W4308488358 cites W4288056696 @default.
- W4308488358 doi "https://doi.org/10.1016/j.simpa.2022.100437" @default.
- W4308488358 hasPublicationYear "2022" @default.
- W4308488358 type Work @default.
- W4308488358 citedByCount "1" @default.
- W4308488358 countsByYear W43084883582023 @default.
- W4308488358 crossrefType "journal-article" @default.
- W4308488358 hasAuthorship W4308488358A5006885347 @default.
- W4308488358 hasAuthorship W4308488358A5040973496 @default.
- W4308488358 hasBestOaLocation W43084883581 @default.
- W4308488358 hasConcept C199360897 @default.
- W4308488358 hasConcept C41008148 @default.
- W4308488358 hasConcept C519991488 @default.
- W4308488358 hasConcept C70721500 @default.
- W4308488358 hasConcept C86803240 @default.
- W4308488358 hasConceptScore W4308488358C199360897 @default.
- W4308488358 hasConceptScore W4308488358C41008148 @default.
- W4308488358 hasConceptScore W4308488358C519991488 @default.
- W4308488358 hasConceptScore W4308488358C70721500 @default.
- W4308488358 hasConceptScore W4308488358C86803240 @default.
- W4308488358 hasLocation W43084883581 @default.
- W4308488358 hasOpenAccess W4308488358 @default.
- W4308488358 hasPrimaryLocation W43084883581 @default.
- W4308488358 hasRelatedWork W1906486629 @default.
- W4308488358 hasRelatedWork W2166247150 @default.
- W4308488358 hasRelatedWork W2584070953 @default.
- W4308488358 hasRelatedWork W3007645298 @default.
- W4308488358 hasRelatedWork W3021560500 @default.
- W4308488358 hasRelatedWork W3160881136 @default.
- W4308488358 hasRelatedWork W4243252198 @default.
- W4308488358 hasRelatedWork W4318619745 @default.
- W4308488358 hasRelatedWork W656686947 @default.
- W4308488358 hasRelatedWork W1825954513 @default.
- W4308488358 hasVolume "14" @default.
- W4308488358 isParatext "false" @default.
- W4308488358 isRetracted "false" @default.
- W4308488358 workType "article" @default.