Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308489971> ?p ?o ?g. }
- W4308489971 endingPage "100126" @default.
- W4308489971 startingPage "100126" @default.
- W4308489971 abstract "Progress in improving cardiogenic shock (CS) outcomes may have been limited by failure to embrace the heterogeneity of pathophysiologic processes driving the underlying syndrome. To better understand the variability inherent to CS populations, recent algorithms for describing underlying CS disease subphenotypes have been described and validated. These strategies hope to identify specific patient subgroups with more favorable responses to standard therapies, as well as those who require novel treatment approaches. This paper is part 2 of a 2-part state-of-the-art review. In this second article, we present machine learning-based statistical approaches to identifying subphenotypes and discuss their strengths and limitations, as well as evidence from other critical illness syndromes and emerging applications in CS. We then discuss how staging and stratification may be considered in CS clinical trials and finally consider future directions for this emerging area of research." @default.
- W4308489971 created "2022-11-12" @default.
- W4308489971 creator A5000653485 @default.
- W4308489971 creator A5001192465 @default.
- W4308489971 creator A5010240121 @default.
- W4308489971 creator A5013249076 @default.
- W4308489971 creator A5014430892 @default.
- W4308489971 creator A5022878011 @default.
- W4308489971 creator A5026254558 @default.
- W4308489971 creator A5028042700 @default.
- W4308489971 creator A5034441524 @default.
- W4308489971 creator A5039988020 @default.
- W4308489971 creator A5045238618 @default.
- W4308489971 creator A5058922147 @default.
- W4308489971 creator A5062477175 @default.
- W4308489971 date "2022-10-01" @default.
- W4308489971 modified "2023-10-07" @default.
- W4308489971 title "Machine Learning Approaches for Phenotyping in Cardiogenic Shock and Critical Illness" @default.
- W4308489971 cites W1924238075 @default.
- W4308489971 cites W1976196376 @default.
- W4308489971 cites W2011430131 @default.
- W4308489971 cites W2036333900 @default.
- W4308489971 cites W2104825124 @default.
- W4308489971 cites W2106703370 @default.
- W4308489971 cites W2124519382 @default.
- W4308489971 cites W2132393613 @default.
- W4308489971 cites W2274346642 @default.
- W4308489971 cites W2515625652 @default.
- W4308489971 cites W2540963844 @default.
- W4308489971 cites W2617324495 @default.
- W4308489971 cites W2728706893 @default.
- W4308489971 cites W2755584350 @default.
- W4308489971 cites W2791498037 @default.
- W4308489971 cites W2883340375 @default.
- W4308489971 cites W2885500852 @default.
- W4308489971 cites W2886027918 @default.
- W4308489971 cites W2896434545 @default.
- W4308489971 cites W2922103361 @default.
- W4308489971 cites W2923965910 @default.
- W4308489971 cites W2944988359 @default.
- W4308489971 cites W2964215571 @default.
- W4308489971 cites W2974296394 @default.
- W4308489971 cites W2982039390 @default.
- W4308489971 cites W3000141053 @default.
- W4308489971 cites W3012527193 @default.
- W4308489971 cites W3014752428 @default.
- W4308489971 cites W3033281129 @default.
- W4308489971 cites W3035016532 @default.
- W4308489971 cites W3037121760 @default.
- W4308489971 cites W3082547701 @default.
- W4308489971 cites W3084394044 @default.
- W4308489971 cites W3094171951 @default.
- W4308489971 cites W3094565329 @default.
- W4308489971 cites W3096743003 @default.
- W4308489971 cites W3101503991 @default.
- W4308489971 cites W3102547229 @default.
- W4308489971 cites W3102707424 @default.
- W4308489971 cites W3112549168 @default.
- W4308489971 cites W3118693467 @default.
- W4308489971 cites W3121924179 @default.
- W4308489971 cites W3153192646 @default.
- W4308489971 cites W3154178180 @default.
- W4308489971 cites W3161715876 @default.
- W4308489971 cites W3164953254 @default.
- W4308489971 cites W3196346110 @default.
- W4308489971 cites W3201331497 @default.
- W4308489971 cites W3204204785 @default.
- W4308489971 cites W3215131822 @default.
- W4308489971 cites W4200205754 @default.
- W4308489971 cites W4200386423 @default.
- W4308489971 cites W4205922819 @default.
- W4308489971 cites W4210418957 @default.
- W4308489971 cites W4210564798 @default.
- W4308489971 cites W4214635346 @default.
- W4308489971 cites W4224222931 @default.
- W4308489971 cites W4229453761 @default.
- W4308489971 cites W4231969161 @default.
- W4308489971 cites W4280620584 @default.
- W4308489971 doi "https://doi.org/10.1016/j.jacadv.2022.100126" @default.
- W4308489971 hasPublicationYear "2022" @default.
- W4308489971 type Work @default.
- W4308489971 citedByCount "6" @default.
- W4308489971 countsByYear W43084899712022 @default.
- W4308489971 countsByYear W43084899712023 @default.
- W4308489971 crossrefType "journal-article" @default.
- W4308489971 hasAuthorship W4308489971A5000653485 @default.
- W4308489971 hasAuthorship W4308489971A5001192465 @default.
- W4308489971 hasAuthorship W4308489971A5010240121 @default.
- W4308489971 hasAuthorship W4308489971A5013249076 @default.
- W4308489971 hasAuthorship W4308489971A5014430892 @default.
- W4308489971 hasAuthorship W4308489971A5022878011 @default.
- W4308489971 hasAuthorship W4308489971A5026254558 @default.
- W4308489971 hasAuthorship W4308489971A5028042700 @default.
- W4308489971 hasAuthorship W4308489971A5034441524 @default.
- W4308489971 hasAuthorship W4308489971A5039988020 @default.
- W4308489971 hasAuthorship W4308489971A5045238618 @default.
- W4308489971 hasAuthorship W4308489971A5058922147 @default.
- W4308489971 hasAuthorship W4308489971A5062477175 @default.