Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308492583> ?p ?o ?g. }
- W4308492583 endingPage "101883" @default.
- W4308492583 startingPage "101883" @default.
- W4308492583 abstract "Predicting the response of vegetation to climate change through mathematical methods is an important way to understand ecosystem condition changes in ecologically vulnerable regions. We took the Sanjiangyuan region, one of the most sensitive areas to climate change, as the study area to construct a simpler calculation and higher resolution (suitable for regional scale study) nonlinear method to predict the normalized difference vegetation index (NDVI) under climate change by combining the delta downscaling method and backpropagation artificial neural network. We first used the delta downscaling method to downscale the coarse-resolution climate element data of the Coupled Model Intercomparison Project (Phase 6) (CMIP6) to 0.08333° (regional scale). By analysing the relationship between NDVI and climate elements, we found that NDVI has the highest correlation with annual total precipitation, annual mean temperature, variation range of precipitation and temperature, etc. Then, we used these impact factors to train the back propagation artificial neural network (BP-ANN) and predict the NDVI in 2030 and 2060 under the SSP1–2.6 scenario and SSP5–8.5 scenario. The simulated results show that the BP-ANN can be used to construct the nonlinear relationship between NDVI and the impact factors on different scales. In the future, NDVI will increase under both the SSP1–2.6 scenario and the SSP5–8.5 scenario. The western part of the study area has the highest altitude, the ecosystem is more vulnerable, and the changes will be the most intense. This study is expected to provide a reference for understanding the impact of climate change on vegetation in national parks in plateaus and to provide a simpler NDVI prediction method for the evaluation of environmental quality under the impact of climate change with NDVI as one of the parameters." @default.
- W4308492583 created "2022-11-12" @default.
- W4308492583 creator A5024530451 @default.
- W4308492583 creator A5027529579 @default.
- W4308492583 creator A5030391924 @default.
- W4308492583 creator A5044602336 @default.
- W4308492583 creator A5059660350 @default.
- W4308492583 creator A5069567970 @default.
- W4308492583 date "2022-12-01" @default.
- W4308492583 modified "2023-10-14" @default.
- W4308492583 title "Normalized difference vegetation index prediction based on the delta downscaling method and back-propagation artificial neural network under climate change in the Sanjiangyuan region, China" @default.
- W4308492583 cites W1498436455 @default.
- W4308492583 cites W1966179453 @default.
- W4308492583 cites W1969361427 @default.
- W4308492583 cites W1973570224 @default.
- W4308492583 cites W1984129257 @default.
- W4308492583 cites W1992050370 @default.
- W4308492583 cites W2012451882 @default.
- W4308492583 cites W2013812000 @default.
- W4308492583 cites W2015037454 @default.
- W4308492583 cites W2025960372 @default.
- W4308492583 cites W2045002121 @default.
- W4308492583 cites W2093788300 @default.
- W4308492583 cites W2131039235 @default.
- W4308492583 cites W2134289299 @default.
- W4308492583 cites W2143219276 @default.
- W4308492583 cites W2159162331 @default.
- W4308492583 cites W2194277957 @default.
- W4308492583 cites W2275007033 @default.
- W4308492583 cites W2540054624 @default.
- W4308492583 cites W2729390536 @default.
- W4308492583 cites W2736309080 @default.
- W4308492583 cites W2756089045 @default.
- W4308492583 cites W2765453548 @default.
- W4308492583 cites W2802138155 @default.
- W4308492583 cites W2803330865 @default.
- W4308492583 cites W2889570082 @default.
- W4308492583 cites W2915787262 @default.
- W4308492583 cites W2930338965 @default.
- W4308492583 cites W2988252620 @default.
- W4308492583 cites W2998620301 @default.
- W4308492583 cites W3008439211 @default.
- W4308492583 cites W3010124445 @default.
- W4308492583 cites W3025231840 @default.
- W4308492583 cites W3039850570 @default.
- W4308492583 cites W3081659297 @default.
- W4308492583 cites W3098383946 @default.
- W4308492583 cites W3100469892 @default.
- W4308492583 cites W3111700100 @default.
- W4308492583 cites W3111973006 @default.
- W4308492583 cites W3126534018 @default.
- W4308492583 cites W3127670633 @default.
- W4308492583 cites W3127794790 @default.
- W4308492583 cites W3128252446 @default.
- W4308492583 cites W3141343900 @default.
- W4308492583 cites W3148250422 @default.
- W4308492583 cites W3153503777 @default.
- W4308492583 cites W3164508509 @default.
- W4308492583 cites W3183606006 @default.
- W4308492583 cites W3189737365 @default.
- W4308492583 cites W3197468152 @default.
- W4308492583 cites W3202974353 @default.
- W4308492583 cites W3207643818 @default.
- W4308492583 cites W3208454634 @default.
- W4308492583 cites W4205464866 @default.
- W4308492583 cites W4213257014 @default.
- W4308492583 cites W4213276944 @default.
- W4308492583 cites W4214749877 @default.
- W4308492583 cites W4214827384 @default.
- W4308492583 cites W4220781392 @default.
- W4308492583 cites W4298080419 @default.
- W4308492583 doi "https://doi.org/10.1016/j.ecoinf.2022.101883" @default.
- W4308492583 hasPublicationYear "2022" @default.
- W4308492583 type Work @default.
- W4308492583 citedByCount "3" @default.
- W4308492583 countsByYear W43084925832023 @default.
- W4308492583 crossrefType "journal-article" @default.
- W4308492583 hasAuthorship W4308492583A5024530451 @default.
- W4308492583 hasAuthorship W4308492583A5027529579 @default.
- W4308492583 hasAuthorship W4308492583A5030391924 @default.
- W4308492583 hasAuthorship W4308492583A5044602336 @default.
- W4308492583 hasAuthorship W4308492583A5059660350 @default.
- W4308492583 hasAuthorship W4308492583A5069567970 @default.
- W4308492583 hasConcept C107054158 @default.
- W4308492583 hasConcept C119857082 @default.
- W4308492583 hasConcept C127313418 @default.
- W4308492583 hasConcept C132651083 @default.
- W4308492583 hasConcept C142724271 @default.
- W4308492583 hasConcept C153294291 @default.
- W4308492583 hasConcept C1549246 @default.
- W4308492583 hasConcept C155032097 @default.
- W4308492583 hasConcept C168754636 @default.
- W4308492583 hasConcept C18903297 @default.
- W4308492583 hasConcept C205649164 @default.
- W4308492583 hasConcept C25022447 @default.
- W4308492583 hasConcept C2776133958 @default.
- W4308492583 hasConcept C39432304 @default.
- W4308492583 hasConcept C41008148 @default.