Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308493489> ?p ?o ?g. }
- W4308493489 endingPage "101632" @default.
- W4308493489 startingPage "101632" @default.
- W4308493489 abstract "The present study aimed to develop and validate a tool for the automated classification of normal, affected, and osteonecrosis mandibular trabecular bone patterns in panoramic radiographs using convolutional neural networks (CNNs).A dataset of 402 panoramic images from 376 patients was selected, comprising 112 control radiographs from healthy patients and 290 images from patients treated with antiresorptive drugs (ARD). The latter was subdivided in 70 radiographs showing thickening of the lamina dura, 128 with abnormal bone patterns, and 92 images of clinically diagnosed osteonecrosis of the jaw (ONJ). Four pre-trained CNNs were fined-tuned and customized to detect and classify the different bone patterns. The best performing network was selected to develop the classification tool. The output was arranged as a colour-coded risk index showing the category and their odds. Classification performance of the networks was assessed through evaluation metrics, receiver operating characteristic curves (ROC), and a confusion matrix. Furthermore, Gradient-weighted Class Activation Mapping (Grad-CAM) was employed to visualise class-discriminative regions.All networks correctly detected and classified the mandibular bone patterns with optimal performance metrics. InceptionResNetV2 showed the best results with an accuracy of 96 %, precision, recall and F1-score of 93 %, and a specificity of 98 %. Overall, most misclassifications occurred between normal and abnormal trabecular bone patterns.CNNs offer reliable potentials for automatic classification of abnormalities in the mandibular trabecular bone pattern in panoramic radiographs of antiresorptive treated patients.A novel method that supports clinical decision making by identifying sites at high risk for ONJ." @default.
- W4308493489 created "2022-11-12" @default.
- W4308493489 creator A5022081242 @default.
- W4308493489 creator A5031969153 @default.
- W4308493489 creator A5076543122 @default.
- W4308493489 creator A5083531856 @default.
- W4308493489 date "2022-12-01" @default.
- W4308493489 modified "2023-10-18" @default.
- W4308493489 title "Convolutional neural network for automated classification of osteonecrosis and related mandibular trabecular patterns" @default.
- W4308493489 cites W1957467225 @default.
- W4308493489 cites W1997823019 @default.
- W4308493489 cites W2009724167 @default.
- W4308493489 cites W2011301426 @default.
- W4308493489 cites W2058889454 @default.
- W4308493489 cites W2068616895 @default.
- W4308493489 cites W2087614588 @default.
- W4308493489 cites W2103999028 @default.
- W4308493489 cites W2107208293 @default.
- W4308493489 cites W2117539524 @default.
- W4308493489 cites W2128024147 @default.
- W4308493489 cites W2398778105 @default.
- W4308493489 cites W2626388687 @default.
- W4308493489 cites W2809254203 @default.
- W4308493489 cites W2809806864 @default.
- W4308493489 cites W2886878432 @default.
- W4308493489 cites W2981738306 @default.
- W4308493489 cites W3003787021 @default.
- W4308493489 cites W3027249803 @default.
- W4308493489 cites W3033972758 @default.
- W4308493489 cites W3034574989 @default.
- W4308493489 cites W3036570640 @default.
- W4308493489 cites W3040400824 @default.
- W4308493489 cites W3080289304 @default.
- W4308493489 cites W3099319035 @default.
- W4308493489 cites W3099878876 @default.
- W4308493489 cites W3102564565 @default.
- W4308493489 cites W3162990408 @default.
- W4308493489 cites W3164800460 @default.
- W4308493489 cites W3184436483 @default.
- W4308493489 cites W3195009539 @default.
- W4308493489 cites W3205574907 @default.
- W4308493489 cites W3209453742 @default.
- W4308493489 cites W3213420920 @default.
- W4308493489 cites W4213264012 @default.
- W4308493489 cites W4221131534 @default.
- W4308493489 cites W4283808015 @default.
- W4308493489 doi "https://doi.org/10.1016/j.bonr.2022.101632" @default.
- W4308493489 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36389628" @default.
- W4308493489 hasPublicationYear "2022" @default.
- W4308493489 type Work @default.
- W4308493489 citedByCount "0" @default.
- W4308493489 crossrefType "journal-article" @default.
- W4308493489 hasAuthorship W4308493489A5022081242 @default.
- W4308493489 hasAuthorship W4308493489A5031969153 @default.
- W4308493489 hasAuthorship W4308493489A5076543122 @default.
- W4308493489 hasAuthorship W4308493489A5083531856 @default.
- W4308493489 hasBestOaLocation W43084934892 @default.
- W4308493489 hasConcept C11171543 @default.
- W4308493489 hasConcept C126322002 @default.
- W4308493489 hasConcept C126838900 @default.
- W4308493489 hasConcept C138602881 @default.
- W4308493489 hasConcept C142724271 @default.
- W4308493489 hasConcept C153180895 @default.
- W4308493489 hasConcept C154945302 @default.
- W4308493489 hasConcept C15744967 @default.
- W4308493489 hasConcept C2776541429 @default.
- W4308493489 hasConcept C2777251235 @default.
- W4308493489 hasConcept C2777556957 @default.
- W4308493489 hasConcept C2781140086 @default.
- W4308493489 hasConcept C36454342 @default.
- W4308493489 hasConcept C41008148 @default.
- W4308493489 hasConcept C58471807 @default.
- W4308493489 hasConcept C71924100 @default.
- W4308493489 hasConcept C81363708 @default.
- W4308493489 hasConcept C97931131 @default.
- W4308493489 hasConceptScore W4308493489C11171543 @default.
- W4308493489 hasConceptScore W4308493489C126322002 @default.
- W4308493489 hasConceptScore W4308493489C126838900 @default.
- W4308493489 hasConceptScore W4308493489C138602881 @default.
- W4308493489 hasConceptScore W4308493489C142724271 @default.
- W4308493489 hasConceptScore W4308493489C153180895 @default.
- W4308493489 hasConceptScore W4308493489C154945302 @default.
- W4308493489 hasConceptScore W4308493489C15744967 @default.
- W4308493489 hasConceptScore W4308493489C2776541429 @default.
- W4308493489 hasConceptScore W4308493489C2777251235 @default.
- W4308493489 hasConceptScore W4308493489C2777556957 @default.
- W4308493489 hasConceptScore W4308493489C2781140086 @default.
- W4308493489 hasConceptScore W4308493489C36454342 @default.
- W4308493489 hasConceptScore W4308493489C41008148 @default.
- W4308493489 hasConceptScore W4308493489C58471807 @default.
- W4308493489 hasConceptScore W4308493489C71924100 @default.
- W4308493489 hasConceptScore W4308493489C81363708 @default.
- W4308493489 hasConceptScore W4308493489C97931131 @default.
- W4308493489 hasLocation W43084934891 @default.
- W4308493489 hasLocation W43084934892 @default.
- W4308493489 hasLocation W43084934893 @default.
- W4308493489 hasLocation W43084934894 @default.
- W4308493489 hasLocation W43084934895 @default.