Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308493531> ?p ?o ?g. }
- W4308493531 endingPage "107456" @default.
- W4308493531 startingPage "107456" @default.
- W4308493531 abstract "Fusarium head blight (FHB) is among the most devastating fungal diseases in cereal crops, reducing yield, and affecting human and livestock health through the production of mycotoxin. Despite application of fungicides, complete eradication of disease is virtually impossible in the field. There is a need for a disease detection technology during late growing stage for estimation of yield affected with FHB and for potential selective harvesting. Most published studies have focused on FHB detection during the milk growth stage using hyperspectral cameras. This preliminary study attempted to fill the knowledge gap by detecting FHB at the ripening stage. A spectral library of healthy and infected ears was collected with a hyperspectral camera in the visible and near-infrared region, over the canopy of eight different wheat varieties. The ears were segmented from the background using a simple linear iterative clustering (SLIC) superpixel algorithm on the normalized difference vegetation index (NDVI) images. Three different machine learning methods, namely, support vector machine (SVM), artificial neural network (ANN), and logistic regression (LR), were utilized for classification. To visualize the FHB distribution in the hypercube, the best performing model was applied for predicting the infected ears in the canopy images. The percentage area coverage of FHB for each hypercube was estimated. Results showed that the SVM algorithm produced the best classification accuracy (CA) of 95.6 % in the test set, followed successively by ANN and LR with CA values of 82.9 and 82.5 %, respectively. Interestingly, the preliminary study shows significant differences in spectral reflectance according to the variety of different resistance levels. The study also proves the feasibility of FHB detection using the developed prediction model during late growth stage with the potential of yield loss estimation before harvest." @default.
- W4308493531 created "2022-11-12" @default.
- W4308493531 creator A5000060953 @default.
- W4308493531 creator A5047472284 @default.
- W4308493531 creator A5053365709 @default.
- W4308493531 creator A5058166484 @default.
- W4308493531 creator A5075978588 @default.
- W4308493531 creator A5077485102 @default.
- W4308493531 creator A5089753073 @default.
- W4308493531 date "2022-12-01" @default.
- W4308493531 modified "2023-10-16" @default.
- W4308493531 title "Detection of fusarium head blight in wheat under field conditions using a hyperspectral camera and machine learning" @default.
- W4308493531 cites W1967660577 @default.
- W4308493531 cites W1983986674 @default.
- W4308493531 cites W1984185202 @default.
- W4308493531 cites W1993337846 @default.
- W4308493531 cites W2004732416 @default.
- W4308493531 cites W2007390263 @default.
- W4308493531 cites W2022961959 @default.
- W4308493531 cites W2027333661 @default.
- W4308493531 cites W2028595885 @default.
- W4308493531 cites W2042052113 @default.
- W4308493531 cites W2044959980 @default.
- W4308493531 cites W2076079886 @default.
- W4308493531 cites W2078939885 @default.
- W4308493531 cites W2079818567 @default.
- W4308493531 cites W2092501830 @default.
- W4308493531 cites W2099844902 @default.
- W4308493531 cites W2103959917 @default.
- W4308493531 cites W2118246710 @default.
- W4308493531 cites W2118476033 @default.
- W4308493531 cites W2120998920 @default.
- W4308493531 cites W2134152049 @default.
- W4308493531 cites W2160272317 @default.
- W4308493531 cites W2510529468 @default.
- W4308493531 cites W2617056706 @default.
- W4308493531 cites W2758810255 @default.
- W4308493531 cites W2761176843 @default.
- W4308493531 cites W2766610839 @default.
- W4308493531 cites W2773108855 @default.
- W4308493531 cites W2788640574 @default.
- W4308493531 cites W2791303772 @default.
- W4308493531 cites W2804953474 @default.
- W4308493531 cites W2888578572 @default.
- W4308493531 cites W2945511169 @default.
- W4308493531 cites W2969545732 @default.
- W4308493531 cites W2973189696 @default.
- W4308493531 cites W2977739483 @default.
- W4308493531 cites W2983376237 @default.
- W4308493531 cites W2989025694 @default.
- W4308493531 cites W3003213935 @default.
- W4308493531 cites W3010876663 @default.
- W4308493531 cites W3012550271 @default.
- W4308493531 cites W3016537670 @default.
- W4308493531 cites W3026418923 @default.
- W4308493531 cites W3034787265 @default.
- W4308493531 cites W3037232932 @default.
- W4308493531 cites W3081561205 @default.
- W4308493531 cites W3089590590 @default.
- W4308493531 cites W3091107621 @default.
- W4308493531 cites W3103145119 @default.
- W4308493531 cites W3108297739 @default.
- W4308493531 cites W3121992675 @default.
- W4308493531 cites W3134207354 @default.
- W4308493531 cites W3145719441 @default.
- W4308493531 cites W3188756249 @default.
- W4308493531 cites W3191349376 @default.
- W4308493531 cites W3199920909 @default.
- W4308493531 cites W3206822938 @default.
- W4308493531 doi "https://doi.org/10.1016/j.compag.2022.107456" @default.
- W4308493531 hasPublicationYear "2022" @default.
- W4308493531 type Work @default.
- W4308493531 citedByCount "3" @default.
- W4308493531 countsByYear W43084935312023 @default.
- W4308493531 crossrefType "journal-article" @default.
- W4308493531 hasAuthorship W4308493531A5000060953 @default.
- W4308493531 hasAuthorship W4308493531A5047472284 @default.
- W4308493531 hasAuthorship W4308493531A5053365709 @default.
- W4308493531 hasAuthorship W4308493531A5058166484 @default.
- W4308493531 hasAuthorship W4308493531A5075978588 @default.
- W4308493531 hasAuthorship W4308493531A5077485102 @default.
- W4308493531 hasAuthorship W4308493531A5089753073 @default.
- W4308493531 hasConcept C101000010 @default.
- W4308493531 hasConcept C12267149 @default.
- W4308493531 hasConcept C144027150 @default.
- W4308493531 hasConcept C146357865 @default.
- W4308493531 hasConcept C151730666 @default.
- W4308493531 hasConcept C153180895 @default.
- W4308493531 hasConcept C1549246 @default.
- W4308493531 hasConcept C154945302 @default.
- W4308493531 hasConcept C159078339 @default.
- W4308493531 hasConcept C25989453 @default.
- W4308493531 hasConcept C2778867309 @default.
- W4308493531 hasConcept C33923547 @default.
- W4308493531 hasConcept C41008148 @default.
- W4308493531 hasConcept C50644808 @default.
- W4308493531 hasConcept C59822182 @default.
- W4308493531 hasConcept C6557445 @default.