Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308493639> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4308493639 endingPage "120" @default.
- W4308493639 startingPage "111" @default.
- W4308493639 abstract "Parallel coordinates are a powerful technique to visually analyze multi-parameter data, i.e., sets of datapoints with potentially many associated parameter values per datapoint. When these sets are large, line rendering becomes a severe performance bottleneck, and since many lines fall into the same pixel the numerical precision of the color buffer is quickly reached. We propose a scalable GPU realization of parallel coordinates building upon 2D pairwise attribute bins, to significantly reduce the number of lines to be rendered. Our approach comprises a GPU compute pipeline that combines shader-based scattering with atomic increment operations to efficiently count how often a line is drawn. These counts are then used to draw all pairwise sub-plots in the parallel coordinates plot, by analytically calculating the opacity for each count and rendering a line with end points determined by the 2D coordinates of the bin. In this way, framebuffer precision issues that are paramount in classical approaches can be overcome. We demonstrate the efficiency of the proposed realization for visualizing a weather forecast ensemble comprising 2.7 billion datapoints, each carrying 7 prognostic floating-point variables like temperature, precipitation and pressure, plus spatial and simulation input variables. We compare our pipeline to a rasterization-based approach regarding performance, and demonstrate interactive brushing at 4 s per frame at full HD viewport resolution. • Parallel Coordinates Plots (PCP) useful for visual multiparameter data analysis • Limited scalability of PCPs for datasets > 100 million data points • Binned PCPs grow with viewport resolution instead of number of data points • Utilization of modern GPUs for efficient binned parallel coordinates computation • Combination with analytical blending to accurately handle transparency" @default.
- W4308493639 created "2022-11-12" @default.
- W4308493639 creator A5000669623 @default.
- W4308493639 creator A5029621326 @default.
- W4308493639 creator A5061172192 @default.
- W4308493639 creator A5072532801 @default.
- W4308493639 date "2022-12-01" @default.
- W4308493639 modified "2023-09-29" @default.
- W4308493639 title "GPU accelerated scalable parallel coordinates plots" @default.
- W4308493639 cites W1975040319 @default.
- W4308493639 cites W1976160686 @default.
- W4308493639 cites W1985985406 @default.
- W4308493639 cites W2043763577 @default.
- W4308493639 cites W2047046780 @default.
- W4308493639 cites W2097089704 @default.
- W4308493639 cites W2102495072 @default.
- W4308493639 cites W2121418890 @default.
- W4308493639 cites W2129086861 @default.
- W4308493639 cites W2132777634 @default.
- W4308493639 cites W2149431522 @default.
- W4308493639 cites W2159493566 @default.
- W4308493639 cites W2210405806 @default.
- W4308493639 cites W2323909273 @default.
- W4308493639 cites W2518571988 @default.
- W4308493639 cites W2790882791 @default.
- W4308493639 cites W2816876164 @default.
- W4308493639 cites W2954560062 @default.
- W4308493639 cites W4233639664 @default.
- W4308493639 doi "https://doi.org/10.1016/j.cag.2022.10.008" @default.
- W4308493639 hasPublicationYear "2022" @default.
- W4308493639 type Work @default.
- W4308493639 citedByCount "1" @default.
- W4308493639 countsByYear W43084936392022 @default.
- W4308493639 crossrefType "journal-article" @default.
- W4308493639 hasAuthorship W4308493639A5000669623 @default.
- W4308493639 hasAuthorship W4308493639A5029621326 @default.
- W4308493639 hasAuthorship W4308493639A5061172192 @default.
- W4308493639 hasAuthorship W4308493639A5072532801 @default.
- W4308493639 hasBestOaLocation W43084936391 @default.
- W4308493639 hasConcept C121684516 @default.
- W4308493639 hasConcept C154945302 @default.
- W4308493639 hasConcept C172367668 @default.
- W4308493639 hasConcept C173608175 @default.
- W4308493639 hasConcept C36464697 @default.
- W4308493639 hasConcept C41008148 @default.
- W4308493639 hasConcept C459310 @default.
- W4308493639 hasConcept C48044578 @default.
- W4308493639 hasConcept C60011546 @default.
- W4308493639 hasConcept C77088390 @default.
- W4308493639 hasConceptScore W4308493639C121684516 @default.
- W4308493639 hasConceptScore W4308493639C154945302 @default.
- W4308493639 hasConceptScore W4308493639C172367668 @default.
- W4308493639 hasConceptScore W4308493639C173608175 @default.
- W4308493639 hasConceptScore W4308493639C36464697 @default.
- W4308493639 hasConceptScore W4308493639C41008148 @default.
- W4308493639 hasConceptScore W4308493639C459310 @default.
- W4308493639 hasConceptScore W4308493639C48044578 @default.
- W4308493639 hasConceptScore W4308493639C60011546 @default.
- W4308493639 hasConceptScore W4308493639C77088390 @default.
- W4308493639 hasFunder F4320320879 @default.
- W4308493639 hasLocation W43084936391 @default.
- W4308493639 hasOpenAccess W4308493639 @default.
- W4308493639 hasPrimaryLocation W43084936391 @default.
- W4308493639 hasRelatedWork W1531780705 @default.
- W4308493639 hasRelatedWork W1547595128 @default.
- W4308493639 hasRelatedWork W1595151633 @default.
- W4308493639 hasRelatedWork W1604898313 @default.
- W4308493639 hasRelatedWork W1784521533 @default.
- W4308493639 hasRelatedWork W2000058275 @default.
- W4308493639 hasRelatedWork W2073045545 @default.
- W4308493639 hasRelatedWork W2370911386 @default.
- W4308493639 hasRelatedWork W2965967938 @default.
- W4308493639 hasRelatedWork W2503642292 @default.
- W4308493639 hasVolume "109" @default.
- W4308493639 isParatext "false" @default.
- W4308493639 isRetracted "false" @default.
- W4308493639 workType "article" @default.