Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308495838> ?p ?o ?g. }
- W4308495838 endingPage "932" @default.
- W4308495838 startingPage "917" @default.
- W4308495838 abstract "We propose novel two-channel filter banks for signals on graphs. Our designs can be applied to arbitrary graphs, given a positive semi definite variation operator, while using arbitrary vertex partitions for downsampling. The proposed generalized filter banks (GFBs) also satisfy several desirable properties including perfect reconstruction and critical sampling, while having efficient implementations. Our results generalize previous approaches that were only valid for the normalized Laplacian of bipartite graphs. Our approach is based on novel graph Fourier transforms (GFTs) given by the generalized eigenvectors of the variation operator. These GFTs are orthogonal in an alternative inner product space which depends on the downsampling and variation operators. Our key theoretical contribution is showing that the spectral folding property of the normalized Laplacian of bipartite graphs, at the core of bipartite filter bank theory, can be generalized for the proposed GFT if the inner product matrix is chosen properly. In addition, we study vertex domain and spectral domain properties of GFBs and illustrate their probabilistic interpretation using Gaussian graphical models. While GFBs can be defined given any choice of a vertex partition for downsampling, we propose an algorithm to optimize these partitions with a criterion that favors balanced partitions with large graph cuts, which are shown to lead to efficient and stable GFB implementations. Our numerical experiments show that partition-optimized GFBs can be implemented efficiently on 3D point clouds with hundreds of thousands of points (nodes), while also improving the color signal representation quality over competing state-of-the-art approaches." @default.
- W4308495838 created "2022-11-12" @default.
- W4308495838 creator A5019574907 @default.
- W4308495838 creator A5034283584 @default.
- W4308495838 creator A5040001106 @default.
- W4308495838 creator A5090833079 @default.
- W4308495838 date "2023-01-01" @default.
- W4308495838 modified "2023-09-25" @default.
- W4308495838 title "Two Channel Filter Banks on Arbitrary Graphs With Positive Semi Definite Variation Operators" @default.
- W4308495838 cites W1501565421 @default.
- W4308495838 cites W1654392496 @default.
- W4308495838 cites W1965419829 @default.
- W4308495838 cites W1979695398 @default.
- W4308495838 cites W1983193888 @default.
- W4308495838 cites W1985123706 @default.
- W4308495838 cites W1991252559 @default.
- W4308495838 cites W2004559848 @default.
- W4308495838 cites W2024496749 @default.
- W4308495838 cites W2046275336 @default.
- W4308495838 cites W2053235372 @default.
- W4308495838 cites W2068057575 @default.
- W4308495838 cites W2078064910 @default.
- W4308495838 cites W2091614127 @default.
- W4308495838 cites W2101491865 @default.
- W4308495838 cites W2136578393 @default.
- W4308495838 cites W2138349707 @default.
- W4308495838 cites W2158787690 @default.
- W4308495838 cites W2161763921 @default.
- W4308495838 cites W2195972617 @default.
- W4308495838 cites W2297306388 @default.
- W4308495838 cites W2400667957 @default.
- W4308495838 cites W2439686107 @default.
- W4308495838 cites W2501990301 @default.
- W4308495838 cites W2531149756 @default.
- W4308495838 cites W2535123509 @default.
- W4308495838 cites W2557692045 @default.
- W4308495838 cites W2610861488 @default.
- W4308495838 cites W2615556757 @default.
- W4308495838 cites W2617467128 @default.
- W4308495838 cites W2632499194 @default.
- W4308495838 cites W2739744923 @default.
- W4308495838 cites W2793556343 @default.
- W4308495838 cites W2793826792 @default.
- W4308495838 cites W2794319422 @default.
- W4308495838 cites W2796431263 @default.
- W4308495838 cites W2885478882 @default.
- W4308495838 cites W2926206832 @default.
- W4308495838 cites W2938670946 @default.
- W4308495838 cites W2943263938 @default.
- W4308495838 cites W2950988181 @default.
- W4308495838 cites W2962910558 @default.
- W4308495838 cites W2962924264 @default.
- W4308495838 cites W2963384510 @default.
- W4308495838 cites W2964693622 @default.
- W4308495838 cites W2979246574 @default.
- W4308495838 cites W2994097903 @default.
- W4308495838 cites W2994763827 @default.
- W4308495838 cites W3008709738 @default.
- W4308495838 cites W3015965491 @default.
- W4308495838 cites W3035497236 @default.
- W4308495838 cites W3090186338 @default.
- W4308495838 cites W3091766805 @default.
- W4308495838 cites W3096037331 @default.
- W4308495838 cites W3133334547 @default.
- W4308495838 cites W3142000089 @default.
- W4308495838 cites W3157727345 @default.
- W4308495838 cites W3162793710 @default.
- W4308495838 cites W3163165408 @default.
- W4308495838 cites W4210770595 @default.
- W4308495838 cites W4229706427 @default.
- W4308495838 cites W4230938240 @default.
- W4308495838 cites W4237386736 @default.
- W4308495838 cites W4255272544 @default.
- W4308495838 cites W4302366751 @default.
- W4308495838 doi "https://doi.org/10.1109/tsp.2023.3257983" @default.
- W4308495838 hasPublicationYear "2023" @default.
- W4308495838 type Work @default.
- W4308495838 citedByCount "0" @default.
- W4308495838 crossrefType "journal-article" @default.
- W4308495838 hasAuthorship W4308495838A5019574907 @default.
- W4308495838 hasAuthorship W4308495838A5034283584 @default.
- W4308495838 hasAuthorship W4308495838A5040001106 @default.
- W4308495838 hasAuthorship W4308495838A5090833079 @default.
- W4308495838 hasBestOaLocation W43084958383 @default.
- W4308495838 hasConcept C110384440 @default.
- W4308495838 hasConcept C11413529 @default.
- W4308495838 hasConcept C115178988 @default.
- W4308495838 hasConcept C115961682 @default.
- W4308495838 hasConcept C118615104 @default.
- W4308495838 hasConcept C132525143 @default.
- W4308495838 hasConcept C154945302 @default.
- W4308495838 hasConcept C197657726 @default.
- W4308495838 hasConcept C203776342 @default.
- W4308495838 hasConcept C22149727 @default.
- W4308495838 hasConcept C33923547 @default.
- W4308495838 hasConcept C41008148 @default.
- W4308495838 hasConcept C74003402 @default.
- W4308495838 hasConceptScore W4308495838C110384440 @default.