Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308496446> ?p ?o ?g. }
- W4308496446 endingPage "127786" @default.
- W4308496446 startingPage "127786" @default.
- W4308496446 abstract "In arboricultural research, data analysis is important to the understanding of the characteristics of urban forest. This study attempted to apply machine learning techniques on a relatively small data set. This research aimed at exploring the biodiversity and structure of tree stands on verges and slopes along a highway, and analysing the influences of habitat characteristics on the tree stands with the aid of machine learning techniques. 53 slopes and 52 verges along San Tin Highway, Hong Kong were surveyed. 7209 trees belonging to 23 species were found. Dimension reduction proved successful in the concise characterisation of urban forest by a biodiversity component and an abundance component. The biodiversity component score of the slopes (0.625) was higher than that of the verges (−0.637). However, the abundance component scores of slopes (−0.059) and verges (0.060) showed slight difference, reflecting comparable tree abundance. A 75–25 train/test split was applied on a data subset consisting of slopes registered under a scheme called Systematic Identification of Maintenance Responsibility of Slopes in the Territory for regression analysis. The scores of the two components were regressed on several slope geophysical variables. Slope height and slope area served as significant predictors explaining biodiversity. Boosting improved the explanatory power and predictive accuracy of the regression model on the biodiversity component, as evidenced by an increase in adjusted R2 by 0.23 and a decrease in RMSE by 0.40. This research proved that component scores can serve as inputs for regression models for the explanation of urban forest characteristics by habitat-related variables. In future, small data sets from tree surveys can be analysed using the workflow demonstrated in this study for the generation of more management insights." @default.
- W4308496446 created "2022-11-12" @default.
- W4308496446 creator A5009076001 @default.
- W4308496446 creator A5014714220 @default.
- W4308496446 creator A5056353767 @default.
- W4308496446 creator A5085094534 @default.
- W4308496446 creator A5085919838 @default.
- W4308496446 date "2022-12-01" @default.
- W4308496446 modified "2023-10-16" @default.
- W4308496446 title "Analysing urban trees on verges and slopes along a highway using machine learning methods" @default.
- W4308496446 cites W1566543829 @default.
- W4308496446 cites W1831050183 @default.
- W4308496446 cites W1968811407 @default.
- W4308496446 cites W1972398480 @default.
- W4308496446 cites W1984284869 @default.
- W4308496446 cites W1993130179 @default.
- W4308496446 cites W1995875735 @default.
- W4308496446 cites W1996163932 @default.
- W4308496446 cites W2014930383 @default.
- W4308496446 cites W2017960296 @default.
- W4308496446 cites W2020520344 @default.
- W4308496446 cites W2087189381 @default.
- W4308496446 cites W2090445489 @default.
- W4308496446 cites W2101108516 @default.
- W4308496446 cites W2119694755 @default.
- W4308496446 cites W2138210633 @default.
- W4308496446 cites W2145154611 @default.
- W4308496446 cites W2158143121 @default.
- W4308496446 cites W2591515860 @default.
- W4308496446 cites W2743601682 @default.
- W4308496446 cites W2752073066 @default.
- W4308496446 cites W2763253312 @default.
- W4308496446 cites W2766542673 @default.
- W4308496446 cites W2890307266 @default.
- W4308496446 cites W2945491565 @default.
- W4308496446 cites W2974452759 @default.
- W4308496446 cites W2974985181 @default.
- W4308496446 cites W2981679558 @default.
- W4308496446 cites W2990170553 @default.
- W4308496446 cites W2990427812 @default.
- W4308496446 cites W3011674323 @default.
- W4308496446 cites W3021414655 @default.
- W4308496446 cites W3044409115 @default.
- W4308496446 cites W3123509162 @default.
- W4308496446 cites W3193321175 @default.
- W4308496446 cites W3211796634 @default.
- W4308496446 cites W4210542183 @default.
- W4308496446 cites W786830168 @default.
- W4308496446 cites W1974266462 @default.
- W4308496446 cites W1988680445 @default.
- W4308496446 doi "https://doi.org/10.1016/j.ufug.2022.127786" @default.
- W4308496446 hasPublicationYear "2022" @default.
- W4308496446 type Work @default.
- W4308496446 citedByCount "1" @default.
- W4308496446 countsByYear W43084964462023 @default.
- W4308496446 crossrefType "journal-article" @default.
- W4308496446 hasAuthorship W4308496446A5009076001 @default.
- W4308496446 hasAuthorship W4308496446A5014714220 @default.
- W4308496446 hasAuthorship W4308496446A5056353767 @default.
- W4308496446 hasAuthorship W4308496446A5085094534 @default.
- W4308496446 hasAuthorship W4308496446A5085919838 @default.
- W4308496446 hasConcept C105795698 @default.
- W4308496446 hasConcept C111472728 @default.
- W4308496446 hasConcept C130217890 @default.
- W4308496446 hasConcept C138885662 @default.
- W4308496446 hasConcept C142724271 @default.
- W4308496446 hasConcept C152877465 @default.
- W4308496446 hasConcept C185933670 @default.
- W4308496446 hasConcept C18903297 @default.
- W4308496446 hasConcept C205649164 @default.
- W4308496446 hasConcept C2776133958 @default.
- W4308496446 hasConcept C2777402642 @default.
- W4308496446 hasConcept C2778136018 @default.
- W4308496446 hasConcept C33923547 @default.
- W4308496446 hasConcept C39432304 @default.
- W4308496446 hasConcept C71924100 @default.
- W4308496446 hasConcept C77077793 @default.
- W4308496446 hasConcept C86803240 @default.
- W4308496446 hasConceptScore W4308496446C105795698 @default.
- W4308496446 hasConceptScore W4308496446C111472728 @default.
- W4308496446 hasConceptScore W4308496446C130217890 @default.
- W4308496446 hasConceptScore W4308496446C138885662 @default.
- W4308496446 hasConceptScore W4308496446C142724271 @default.
- W4308496446 hasConceptScore W4308496446C152877465 @default.
- W4308496446 hasConceptScore W4308496446C185933670 @default.
- W4308496446 hasConceptScore W4308496446C18903297 @default.
- W4308496446 hasConceptScore W4308496446C205649164 @default.
- W4308496446 hasConceptScore W4308496446C2776133958 @default.
- W4308496446 hasConceptScore W4308496446C2777402642 @default.
- W4308496446 hasConceptScore W4308496446C2778136018 @default.
- W4308496446 hasConceptScore W4308496446C33923547 @default.
- W4308496446 hasConceptScore W4308496446C39432304 @default.
- W4308496446 hasConceptScore W4308496446C71924100 @default.
- W4308496446 hasConceptScore W4308496446C77077793 @default.
- W4308496446 hasConceptScore W4308496446C86803240 @default.
- W4308496446 hasLocation W43084964461 @default.
- W4308496446 hasOpenAccess W4308496446 @default.
- W4308496446 hasPrimaryLocation W43084964461 @default.