Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308498104> ?p ?o ?g. }
- W4308498104 endingPage "2761" @default.
- W4308498104 startingPage "2742" @default.
- W4308498104 abstract "Multi-physics modelling of the Solid Oxide Fuel Cell (SOFC) stack requires significant computational resources. Design optimization of large-scale stacks and stack towers has always been a challenge in recent years. This study establishes a three-dimensional multi-physics model based on a two-step coupling using the BP neural network. The comparison between the novel model and the traditional fully coupled model in both accuracy and computing resource requirements are explored. The novel method has high effectiveness for modelling the large-scale stacks. Based on this, planar SOFC 50-cell stacks and 150-cell stack towers are simulated. The results show that, the flow uniformity of fuel distribution of the stack towers can decrease more than 30% comparing with the 50-cell stack, which leads to significant deterioration of the voltage and temperature distribution. The parameters of manifold and buffer area and channel height of the stack tower is optimized to achieve better uniformity of flow and voltage distribution and lower temperature gradient simultaneously." @default.
- W4308498104 created "2022-11-12" @default.
- W4308498104 creator A5015370943 @default.
- W4308498104 creator A5034583354 @default.
- W4308498104 creator A5066695209 @default.
- W4308498104 creator A5089536811 @default.
- W4308498104 date "2023-01-01" @default.
- W4308498104 modified "2023-09-30" @default.
- W4308498104 title "Three-dimensional multi-physics modelling and structural optimization of SOFC large-scale stack and stack tower" @default.
- W4308498104 cites W1847336091 @default.
- W4308498104 cites W1969729513 @default.
- W4308498104 cites W1989099759 @default.
- W4308498104 cites W2015470138 @default.
- W4308498104 cites W2019603354 @default.
- W4308498104 cites W2022283735 @default.
- W4308498104 cites W2024847477 @default.
- W4308498104 cites W2094063305 @default.
- W4308498104 cites W2102249604 @default.
- W4308498104 cites W2156784130 @default.
- W4308498104 cites W2284451712 @default.
- W4308498104 cites W2537837363 @default.
- W4308498104 cites W2560726926 @default.
- W4308498104 cites W2565676397 @default.
- W4308498104 cites W2581535318 @default.
- W4308498104 cites W2740313512 @default.
- W4308498104 cites W2742667483 @default.
- W4308498104 cites W2756274406 @default.
- W4308498104 cites W2944242317 @default.
- W4308498104 cites W2966438208 @default.
- W4308498104 cites W2987331426 @default.
- W4308498104 cites W2994707813 @default.
- W4308498104 cites W3012840925 @default.
- W4308498104 cites W3022358140 @default.
- W4308498104 cites W3120337254 @default.
- W4308498104 cites W3152880454 @default.
- W4308498104 cites W3161483636 @default.
- W4308498104 cites W3173439054 @default.
- W4308498104 cites W3195347400 @default.
- W4308498104 cites W3216963596 @default.
- W4308498104 cites W4200213726 @default.
- W4308498104 cites W4200605474 @default.
- W4308498104 cites W4226382079 @default.
- W4308498104 cites W4283022773 @default.
- W4308498104 doi "https://doi.org/10.1016/j.ijhydene.2022.10.146" @default.
- W4308498104 hasPublicationYear "2023" @default.
- W4308498104 type Work @default.
- W4308498104 citedByCount "5" @default.
- W4308498104 countsByYear W43084981042023 @default.
- W4308498104 crossrefType "journal-article" @default.
- W4308498104 hasAuthorship W4308498104A5015370943 @default.
- W4308498104 hasAuthorship W4308498104A5034583354 @default.
- W4308498104 hasAuthorship W4308498104A5066695209 @default.
- W4308498104 hasAuthorship W4308498104A5089536811 @default.
- W4308498104 hasConcept C116915560 @default.
- W4308498104 hasConcept C119599485 @default.
- W4308498104 hasConcept C121332964 @default.
- W4308498104 hasConcept C127413603 @default.
- W4308498104 hasConcept C131584629 @default.
- W4308498104 hasConcept C165801399 @default.
- W4308498104 hasConcept C17525397 @default.
- W4308498104 hasConcept C184720557 @default.
- W4308498104 hasConcept C192562407 @default.
- W4308498104 hasConcept C199360897 @default.
- W4308498104 hasConcept C24326235 @default.
- W4308498104 hasConcept C2777831296 @default.
- W4308498104 hasConcept C2778456004 @default.
- W4308498104 hasConcept C2778755073 @default.
- W4308498104 hasConcept C38349280 @default.
- W4308498104 hasConcept C41008148 @default.
- W4308498104 hasConcept C459310 @default.
- W4308498104 hasConcept C57879066 @default.
- W4308498104 hasConcept C62520636 @default.
- W4308498104 hasConcept C66938386 @default.
- W4308498104 hasConcept C78519656 @default.
- W4308498104 hasConcept C89395315 @default.
- W4308498104 hasConcept C9395851 @default.
- W4308498104 hasConceptScore W4308498104C116915560 @default.
- W4308498104 hasConceptScore W4308498104C119599485 @default.
- W4308498104 hasConceptScore W4308498104C121332964 @default.
- W4308498104 hasConceptScore W4308498104C127413603 @default.
- W4308498104 hasConceptScore W4308498104C131584629 @default.
- W4308498104 hasConceptScore W4308498104C165801399 @default.
- W4308498104 hasConceptScore W4308498104C17525397 @default.
- W4308498104 hasConceptScore W4308498104C184720557 @default.
- W4308498104 hasConceptScore W4308498104C192562407 @default.
- W4308498104 hasConceptScore W4308498104C199360897 @default.
- W4308498104 hasConceptScore W4308498104C24326235 @default.
- W4308498104 hasConceptScore W4308498104C2777831296 @default.
- W4308498104 hasConceptScore W4308498104C2778456004 @default.
- W4308498104 hasConceptScore W4308498104C2778755073 @default.
- W4308498104 hasConceptScore W4308498104C38349280 @default.
- W4308498104 hasConceptScore W4308498104C41008148 @default.
- W4308498104 hasConceptScore W4308498104C459310 @default.
- W4308498104 hasConceptScore W4308498104C57879066 @default.
- W4308498104 hasConceptScore W4308498104C62520636 @default.
- W4308498104 hasConceptScore W4308498104C66938386 @default.
- W4308498104 hasConceptScore W4308498104C78519656 @default.
- W4308498104 hasConceptScore W4308498104C89395315 @default.