Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308498148> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4308498148 endingPage "109878" @default.
- W4308498148 startingPage "109878" @default.
- W4308498148 abstract "Scanning laser Doppler vibrometer is a popular tool for the acquisition of the full wavefield of propagating guided waves, in particular Lamb waves. Signal processing of such a wavefield enables us to reveal damage in the inspected structure. However, the process of acquiring the full wavefield of guided waves is time-consuming. One possible solution to tackle this problem is to acquire the Lamb waves in a low-resolution form and then apply a compressive sensing (CS) or deep learning-based super-resolution approach to that low-resolution form of full wavefield data. In this work, we applied two deep learning-based super-resolution approaches on a large synthetic low-resolution dataset of full wavefields of propagating Lamb waves in a plate of CFRP. The developed deep learning approaches are elaborated, and the results obtained from both models are compared with the conventional CS approach. Furthermore, the validation of the proposed deep learning models in a real-world scenario is performed by an experiment on a CFRP plate with embedded Teflon inserts simulating delaminations. It is concluded that the performance of both models outperforms the conventional CS approach." @default.
- W4308498148 created "2022-11-12" @default.
- W4308498148 creator A5022390154 @default.
- W4308498148 creator A5037123372 @default.
- W4308498148 creator A5080940319 @default.
- W4308498148 creator A5082962621 @default.
- W4308498148 date "2023-03-01" @default.
- W4308498148 modified "2023-10-13" @default.
- W4308498148 title "Deep learning super-resolution for the reconstruction of full wavefield of Lamb waves" @default.
- W4308498148 cites W1492648273 @default.
- W4308498148 cites W1986931325 @default.
- W4308498148 cites W2011249813 @default.
- W4308498148 cites W2016049295 @default.
- W4308498148 cites W2027694487 @default.
- W4308498148 cites W2029350791 @default.
- W4308498148 cites W2031503222 @default.
- W4308498148 cites W2082206802 @default.
- W4308498148 cites W2083042020 @default.
- W4308498148 cites W2101675075 @default.
- W4308498148 cites W2109357213 @default.
- W4308498148 cites W2164452299 @default.
- W4308498148 cites W2230432131 @default.
- W4308498148 cites W2565872838 @default.
- W4308498148 cites W2757266605 @default.
- W4308498148 cites W2772719827 @default.
- W4308498148 cites W2903823220 @default.
- W4308498148 cites W2963186101 @default.
- W4308498148 cites W2963199294 @default.
- W4308498148 cites W2973648079 @default.
- W4308498148 cites W4250955649 @default.
- W4308498148 doi "https://doi.org/10.1016/j.ymssp.2022.109878" @default.
- W4308498148 hasPublicationYear "2023" @default.
- W4308498148 type Work @default.
- W4308498148 citedByCount "0" @default.
- W4308498148 crossrefType "journal-article" @default.
- W4308498148 hasAuthorship W4308498148A5022390154 @default.
- W4308498148 hasAuthorship W4308498148A5037123372 @default.
- W4308498148 hasAuthorship W4308498148A5080940319 @default.
- W4308498148 hasAuthorship W4308498148A5082962621 @default.
- W4308498148 hasConcept C120665830 @default.
- W4308498148 hasConcept C121332964 @default.
- W4308498148 hasConcept C127313418 @default.
- W4308498148 hasConcept C138268822 @default.
- W4308498148 hasConcept C142358356 @default.
- W4308498148 hasConcept C154945302 @default.
- W4308498148 hasConcept C199360897 @default.
- W4308498148 hasConcept C24890656 @default.
- W4308498148 hasConcept C2779843651 @default.
- W4308498148 hasConcept C2984025587 @default.
- W4308498148 hasConcept C41008148 @default.
- W4308498148 hasConcept C44886760 @default.
- W4308498148 hasConcept C520434653 @default.
- W4308498148 hasConcept C96199931 @default.
- W4308498148 hasConcept C97034920 @default.
- W4308498148 hasConceptScore W4308498148C120665830 @default.
- W4308498148 hasConceptScore W4308498148C121332964 @default.
- W4308498148 hasConceptScore W4308498148C127313418 @default.
- W4308498148 hasConceptScore W4308498148C138268822 @default.
- W4308498148 hasConceptScore W4308498148C142358356 @default.
- W4308498148 hasConceptScore W4308498148C154945302 @default.
- W4308498148 hasConceptScore W4308498148C199360897 @default.
- W4308498148 hasConceptScore W4308498148C24890656 @default.
- W4308498148 hasConceptScore W4308498148C2779843651 @default.
- W4308498148 hasConceptScore W4308498148C2984025587 @default.
- W4308498148 hasConceptScore W4308498148C41008148 @default.
- W4308498148 hasConceptScore W4308498148C44886760 @default.
- W4308498148 hasConceptScore W4308498148C520434653 @default.
- W4308498148 hasConceptScore W4308498148C96199931 @default.
- W4308498148 hasConceptScore W4308498148C97034920 @default.
- W4308498148 hasFunder F4320322511 @default.
- W4308498148 hasLocation W43084981481 @default.
- W4308498148 hasOpenAccess W4308498148 @default.
- W4308498148 hasPrimaryLocation W43084981481 @default.
- W4308498148 hasRelatedWork W1971731820 @default.
- W4308498148 hasRelatedWork W2052141358 @default.
- W4308498148 hasRelatedWork W2062104165 @default.
- W4308498148 hasRelatedWork W2133818864 @default.
- W4308498148 hasRelatedWork W2568672998 @default.
- W4308498148 hasRelatedWork W2928135378 @default.
- W4308498148 hasRelatedWork W3017341204 @default.
- W4308498148 hasRelatedWork W3199221649 @default.
- W4308498148 hasRelatedWork W4244336329 @default.
- W4308498148 hasRelatedWork W4310584441 @default.
- W4308498148 hasVolume "186" @default.
- W4308498148 isParatext "false" @default.
- W4308498148 isRetracted "false" @default.
- W4308498148 workType "article" @default.