Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308498506> ?p ?o ?g. }
- W4308498506 endingPage "129534" @default.
- W4308498506 startingPage "129534" @default.
- W4308498506 abstract "In recent years, alkali activated material (AAM) or geopolymer has emerged as a sustainable and eco-friendly alternative to cement. It is owing to its low power consumption and greenhouse gas emissions, as well as good mechanical and durability features. However, due to the nature and diversity of available source materials, developing an AAM mix to attain desirable fresh properties, sufficient strength characteristics, and touted environmental benefits is quite challenging. It demands a precise selection of input material and mix proportions based on several trials, which requires a large quantity of material, time, and effort. Therefore, employing machine learning techniques could facilitate and accelerate the development of one-part AAM binder with the desired properties. This study evaluates the performance of various machine learning models (Ridge regression, RF, LightGBM, and XGBoost) for accurate compressive strength prediction of one-part AAM binder. Extreme Gradient Boost (XGBoost) outperformed all other algorithms in terms of prediction efficacy and accuracy. In addition, SHapley Additive exPlanations (SHAP) is also used to interpret the predicted compressive strength through XGBoost and the effect of various parameters, independently and in relation with other parameters, is evaluated and discussed in detail. The interpretable ML strategy used in this study will aid in the production and performance tuning of durable and sustainable one-part AAMs for widespread applications." @default.
- W4308498506 created "2022-11-12" @default.
- W4308498506 creator A5049741472 @default.
- W4308498506 creator A5069346865 @default.
- W4308498506 creator A5073277576 @default.
- W4308498506 creator A5077604881 @default.
- W4308498506 date "2022-12-01" @default.
- W4308498506 modified "2023-10-10" @default.
- W4308498506 title "Compressive strength prediction of one-part alkali activated material enabled by interpretable machine learning" @default.
- W4308498506 cites W1482021765 @default.
- W4308498506 cites W1966332297 @default.
- W4308498506 cites W1970245951 @default.
- W4308498506 cites W1974131402 @default.
- W4308498506 cites W2016046630 @default.
- W4308498506 cites W2017476428 @default.
- W4308498506 cites W2036776061 @default.
- W4308498506 cites W2054737818 @default.
- W4308498506 cites W2065812371 @default.
- W4308498506 cites W2093985461 @default.
- W4308498506 cites W2136600275 @default.
- W4308498506 cites W2159393820 @default.
- W4308498506 cites W2170242247 @default.
- W4308498506 cites W2191908022 @default.
- W4308498506 cites W2198401780 @default.
- W4308498506 cites W2402594575 @default.
- W4308498506 cites W2518887584 @default.
- W4308498506 cites W2621412568 @default.
- W4308498506 cites W2744071121 @default.
- W4308498506 cites W2768077267 @default.
- W4308498506 cites W2793661364 @default.
- W4308498506 cites W2793708044 @default.
- W4308498506 cites W2817009626 @default.
- W4308498506 cites W2887378826 @default.
- W4308498506 cites W2907761759 @default.
- W4308498506 cites W2912576013 @default.
- W4308498506 cites W2914279912 @default.
- W4308498506 cites W2923370583 @default.
- W4308498506 cites W2932346248 @default.
- W4308498506 cites W2962929724 @default.
- W4308498506 cites W2972831570 @default.
- W4308498506 cites W2973007085 @default.
- W4308498506 cites W2976039593 @default.
- W4308498506 cites W2981121914 @default.
- W4308498506 cites W2990992350 @default.
- W4308498506 cites W2995252610 @default.
- W4308498506 cites W2998738397 @default.
- W4308498506 cites W2999615587 @default.
- W4308498506 cites W3003573779 @default.
- W4308498506 cites W3004315419 @default.
- W4308498506 cites W3008526623 @default.
- W4308498506 cites W3008670572 @default.
- W4308498506 cites W3009211770 @default.
- W4308498506 cites W3012181011 @default.
- W4308498506 cites W3024349666 @default.
- W4308498506 cites W3027796262 @default.
- W4308498506 cites W3028691578 @default.
- W4308498506 cites W3046761449 @default.
- W4308498506 cites W3109217803 @default.
- W4308498506 cites W3111732199 @default.
- W4308498506 cites W3112209157 @default.
- W4308498506 cites W3118493163 @default.
- W4308498506 cites W3157776042 @default.
- W4308498506 cites W3158739420 @default.
- W4308498506 cites W3179009462 @default.
- W4308498506 cites W3186934638 @default.
- W4308498506 cites W3192644538 @default.
- W4308498506 cites W3200994338 @default.
- W4308498506 cites W3203897832 @default.
- W4308498506 cites W3206654254 @default.
- W4308498506 cites W3207942183 @default.
- W4308498506 cites W3211282883 @default.
- W4308498506 cites W3217295356 @default.
- W4308498506 cites W4200331542 @default.
- W4308498506 cites W4207022764 @default.
- W4308498506 cites W4210798959 @default.
- W4308498506 cites W4220889564 @default.
- W4308498506 cites W4283260084 @default.
- W4308498506 doi "https://doi.org/10.1016/j.conbuildmat.2022.129534" @default.
- W4308498506 hasPublicationYear "2022" @default.
- W4308498506 type Work @default.
- W4308498506 citedByCount "13" @default.
- W4308498506 countsByYear W43084985062023 @default.
- W4308498506 crossrefType "journal-article" @default.
- W4308498506 hasAuthorship W4308498506A5049741472 @default.
- W4308498506 hasAuthorship W4308498506A5069346865 @default.
- W4308498506 hasAuthorship W4308498506A5073277576 @default.
- W4308498506 hasAuthorship W4308498506A5077604881 @default.
- W4308498506 hasConcept C104304963 @default.
- W4308498506 hasConcept C119857082 @default.
- W4308498506 hasConcept C127413603 @default.
- W4308498506 hasConcept C154945302 @default.
- W4308498506 hasConcept C159985019 @default.
- W4308498506 hasConcept C192562407 @default.
- W4308498506 hasConcept C21880701 @default.
- W4308498506 hasConcept C2780837464 @default.
- W4308498506 hasConcept C30407753 @default.
- W4308498506 hasConcept C41008148 @default.
- W4308498506 hasConcept C77088390 @default.