Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308503295> ?p ?o ?g. }
- W4308503295 endingPage "457" @default.
- W4308503295 startingPage "433" @default.
- W4308503295 abstract "Abstract Loma Galena (978,852 t Pb, 206 Moz Ag) is one of eight epithermal deposits in the world-class Navidad Pb + Ag ± (Zn, Cu) district located in the Cañadón Asfalto continental foreland basin, northern Patagonia, Argentina. This basin formed during the Jurassic in an extensional tectonic regime during the breakup of Gondwana. Host rocks comprise major listric faulted and tilted blocks of K-rich andesite to dacite lava flows (173.9–170.8 Ma; U-Pb ages for zircon) unconformably overlain by mudstone interbedded with stromatolitic and pisolitic limestones, sandstone, coal, and an Sr-rich evaporite layer deposited in a lacustrine environment. The mineralization occurs as disseminations in the organic-rich sedimentary rocks, in veins and hydrothermal breccia dikes in the hanging walls and footwalls of NW- and NE-striking normal faults, in volcanic autobreccias, and in a phreatic breccia at the contact of volcanic and sedimentary rocks. The earliest hydrothermal minerals consist of veins of colloform, crustiform, and cockade calcite 1 (δ13Cfluid –4.7 to 0.8‰; δ18Ofluid 4.8–11.6‰) and siderite. The precipitating fluids were likely basement-exchanged basinal brines having salinities of 9.5 to 16.4 wt % NaCl equiv and temperatures of 154.7° to 212°C. The interaction of these fluids with the host volcanic rocks formed calcite, albite, adularia, and celadonite-glauconite-group minerals followed by chlorite and siderite as fO2 decreased. Fluids intermittently boiled, as evidenced by bladed (platy) texture in calcite 1. Subsequent mineralizing stages contributed to the metal endowment of Loma Galena. The abundance of organic-rich mudstone and δ34S from –15.4 to 12.9‰ for sulfides suggests that the bottom waters of the lake were anoxic and the loci of microbial sulfate reduction (evaporites have δ34S 35‰). Mixing of upflowing metal-rich basinal fluids carrying some S from depth with this H2S-rich connate water efficiently precipitated Ag-bearing framboidal pyrite, colloform pyrite-marcasite, chalcopyrite, bornite, tennantite-tetrahedrite, sphalerite, and galena as veins, breccias, and disseminations in host rocks. The highest grade and tonnage of the ores are found in autobreccias at the junction of the uppermost lava flow and in the overlying mudstone, where the addition of a strong microbial signature is recorded in sulfides. This event also led to partial dissolution of magmatic and hydrothermal feldspar and calcite 1 in the altered volcanic rocks. Mineralization was followed by hydrothermal brecciation and successive precipitation of chalcedony (δ18Ofluid 2.6–4.8‰), barite (δ34S 15.7–22‰; 160.9°–183.8°C; 7.7–9.7 wt % NaCl equiv), calcite 2 (δ18Ofluid –10.2 to –3.7‰, 58°–95°C; 1.9–7.0 wt % NaCl equiv), strontianite, and quartz in brecciated veins and breccias; kaolinite (δ18Ofluid 2–6.2‰), illite-smectite, smectite, and carbonates with minor chalcedony and barite in the volcanic rocks; and calcite, chalcedony, and barite in the sedimentary rocks. A trend of decreasing salinity with decreasing temperature and lowering δ18O of the fluids with time suggests dilution of the basinal fluids by mixing with Jurassic meteoric water (δ18O −9 to −5.2‰). Loma Galena is a unique example of a polymetallic epithermal system formed in a sublacustrine anoxic environment that promoted the efficient deposition and preservation of Ag-bearing sulfides, thereby contributing to the large size and relatively high grade of the deposit." @default.
- W4308503295 created "2022-11-12" @default.
- W4308503295 creator A5010210623 @default.
- W4308503295 creator A5033863555 @default.
- W4308503295 creator A5041933494 @default.
- W4308503295 creator A5043756594 @default.
- W4308503295 creator A5047531656 @default.
- W4308503295 creator A5051396614 @default.
- W4308503295 creator A5051894802 @default.
- W4308503295 creator A5065245979 @default.
- W4308503295 creator A5087494653 @default.
- W4308503295 date "2023-03-01" @default.
- W4308503295 modified "2023-10-12" @default.
- W4308503295 title "Genesis of the Loma Galena Pb-Ag Deposit, Navidad District, Patagonia, Argentina: A Unique Epithermal System Capped by an Anoxic Lake" @default.
- W4308503295 cites W1207354341 @default.
- W4308503295 cites W1451871409 @default.
- W4308503295 cites W1550047037 @default.
- W4308503295 cites W1624387927 @default.
- W4308503295 cites W1958675952 @default.
- W4308503295 cites W1966211907 @default.
- W4308503295 cites W1969282993 @default.
- W4308503295 cites W1970658925 @default.
- W4308503295 cites W1972081641 @default.
- W4308503295 cites W1974924765 @default.
- W4308503295 cites W2002713009 @default.
- W4308503295 cites W2004974947 @default.
- W4308503295 cites W2005121896 @default.
- W4308503295 cites W2008281306 @default.
- W4308503295 cites W2009689313 @default.
- W4308503295 cites W2014936152 @default.
- W4308503295 cites W2015782552 @default.
- W4308503295 cites W2016238349 @default.
- W4308503295 cites W2018324515 @default.
- W4308503295 cites W2020461753 @default.
- W4308503295 cites W2021924317 @default.
- W4308503295 cites W2022163977 @default.
- W4308503295 cites W2022169579 @default.
- W4308503295 cites W2024536426 @default.
- W4308503295 cites W2026608718 @default.
- W4308503295 cites W2027140297 @default.
- W4308503295 cites W2028820130 @default.
- W4308503295 cites W2035154510 @default.
- W4308503295 cites W2040449064 @default.
- W4308503295 cites W2046100057 @default.
- W4308503295 cites W2048980980 @default.
- W4308503295 cites W2049709635 @default.
- W4308503295 cites W2054414336 @default.
- W4308503295 cites W2054692754 @default.
- W4308503295 cites W2057559725 @default.
- W4308503295 cites W2057963149 @default.
- W4308503295 cites W2059414186 @default.
- W4308503295 cites W2061002420 @default.
- W4308503295 cites W2064914739 @default.
- W4308503295 cites W2069903397 @default.
- W4308503295 cites W2070934151 @default.
- W4308503295 cites W2074139688 @default.
- W4308503295 cites W2075347951 @default.
- W4308503295 cites W2075959402 @default.
- W4308503295 cites W2079743012 @default.
- W4308503295 cites W2099535239 @default.
- W4308503295 cites W2100411277 @default.
- W4308503295 cites W2115082809 @default.
- W4308503295 cites W2127521842 @default.
- W4308503295 cites W2129483939 @default.
- W4308503295 cites W2132595765 @default.
- W4308503295 cites W2135965020 @default.
- W4308503295 cites W2154119734 @default.
- W4308503295 cites W2161088329 @default.
- W4308503295 cites W2165771317 @default.
- W4308503295 cites W2167884020 @default.
- W4308503295 cites W2169746538 @default.
- W4308503295 cites W2260604430 @default.
- W4308503295 cites W2324078675 @default.
- W4308503295 cites W2333234933 @default.
- W4308503295 cites W2552693350 @default.
- W4308503295 cites W2596260035 @default.
- W4308503295 cites W2944454366 @default.
- W4308503295 cites W2995789004 @default.
- W4308503295 cites W3047724557 @default.
- W4308503295 cites W4243088827 @default.
- W4308503295 cites W4243740491 @default.
- W4308503295 doi "https://doi.org/10.5382/econgeo.4968" @default.
- W4308503295 hasPublicationYear "2023" @default.
- W4308503295 type Work @default.
- W4308503295 citedByCount "0" @default.
- W4308503295 crossrefType "journal-article" @default.
- W4308503295 hasAuthorship W4308503295A5010210623 @default.
- W4308503295 hasAuthorship W4308503295A5033863555 @default.
- W4308503295 hasAuthorship W4308503295A5041933494 @default.
- W4308503295 hasAuthorship W4308503295A5043756594 @default.
- W4308503295 hasAuthorship W4308503295A5047531656 @default.
- W4308503295 hasAuthorship W4308503295A5051396614 @default.
- W4308503295 hasAuthorship W4308503295A5051894802 @default.
- W4308503295 hasAuthorship W4308503295A5065245979 @default.
- W4308503295 hasAuthorship W4308503295A5087494653 @default.
- W4308503295 hasConcept C120806208 @default.
- W4308503295 hasConcept C127313418 @default.
- W4308503295 hasConcept C17409809 @default.