Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308509766> ?p ?o ?g. }
- W4308509766 endingPage "5624" @default.
- W4308509766 startingPage "5624" @default.
- W4308509766 abstract "Accurate estimation of the maize leaf area index (LAI) and biomass is of great importance in guiding field management and early yield estimation. Physical models and traditional machine learning methods are commonly used for LAI and biomass estimation. However, these models and methods mostly rely on handcrafted features and theoretical formulas under idealized assumptions, which limits their accuracy. Deep neural networks have demonstrated great superiority in automatic feature extraction and complicated nonlinear approximation, but their application to LAI and biomass estimation has been hindered by the shortage of in situ data. Therefore, bridging the gap of data shortage and making it possible to leverage deep neural networks to estimate maize LAI and biomass is of great significance. Optical data cannot provide information in the lower canopy due to the limited penetrability, but synthetic aperture radar (SAR) data can do this, so the integration of optical and SAR data is necessary. In this paper, 158 samples from the jointing, trumpet, flowering, and filling stages of maize were collected for investigation. First, we propose an improved version of the mixup training method, which is termed mixup+, to augment the sample amount. We then constructed a novel gated Siamese deep neural network (GSDNN) based on a gating mechanism and a Siamese architecture to integrate optical and SAR data for the estimation of the LAI and biomass. We compared the accuracy of the GSDNN with those of other machine learning methods, i.e., multiple linear regression (MLR), support vector regression (SVR), random forest regression (RFR), and a multilayer perceptron (MLP). The experimental results show that without the use of mixup+, the GSDNN achieved a similar accuracy to that of the simple neural network MLP in terms of R2 and RMSE, and this was slightly lower than those of MLR, SVR, and RFR. However, with the help of mixup+, the GSDNN achieved state-of-the-art performance (R2 = 0.71, 0.78, and 0.86 and RMSE = 0.58, 871.83, and 150.76 g/m2, for LAI, Biomass_wet, and Biomass_dry, respectively), exceeding the accuracies of MLR, SVR, RFR, and MLP. In addition, through the integration of optical and SAR data, the GSDNN achieved better accuracy in LAI and biomass estimation than when optical or SAR data alone were used. We found that the most appropriate amount of synthetic data from mixup+ was five times the amount of original data. Overall, this study demonstrates that the GSDNN + mixup+ has great potential for the integration of optical and SAR data with the aim of improving the estimation accuracy of the maize LAI and biomass with limited in situ data." @default.
- W4308509766 created "2022-11-12" @default.
- W4308509766 creator A5009182769 @default.
- W4308509766 creator A5013446193 @default.
- W4308509766 creator A5036386497 @default.
- W4308509766 creator A5036811508 @default.
- W4308509766 creator A5049898739 @default.
- W4308509766 creator A5059727926 @default.
- W4308509766 creator A5090548589 @default.
- W4308509766 date "2022-11-07" @default.
- W4308509766 modified "2023-09-25" @default.
- W4308509766 title "Enabling Deep-Neural-Network-Integrated Optical and SAR Data to Estimate the Maize Leaf Area Index and Biomass with Limited In Situ Data" @default.
- W4308509766 cites W1677182931 @default.
- W4308509766 cites W1812582463 @default.
- W4308509766 cites W1826962995 @default.
- W4308509766 cites W1988872612 @default.
- W4308509766 cites W2018105531 @default.
- W4308509766 cites W2063744432 @default.
- W4308509766 cites W2064675550 @default.
- W4308509766 cites W2098528582 @default.
- W4308509766 cites W2125397877 @default.
- W4308509766 cites W2149813070 @default.
- W4308509766 cites W2150280378 @default.
- W4308509766 cites W2500826400 @default.
- W4308509766 cites W2757066210 @default.
- W4308509766 cites W2771068942 @default.
- W4308509766 cites W2903282641 @default.
- W4308509766 cites W2906799152 @default.
- W4308509766 cites W2940726923 @default.
- W4308509766 cites W2943316090 @default.
- W4308509766 cites W2950294063 @default.
- W4308509766 cites W2963108767 @default.
- W4308509766 cites W2963608065 @default.
- W4308509766 cites W2969545732 @default.
- W4308509766 cites W2996909480 @default.
- W4308509766 cites W3008439211 @default.
- W4308509766 cites W3011374771 @default.
- W4308509766 cites W3092186127 @default.
- W4308509766 cites W3120817507 @default.
- W4308509766 cites W3124566001 @default.
- W4308509766 cites W3175205795 @default.
- W4308509766 cites W3179490821 @default.
- W4308509766 cites W3196145901 @default.
- W4308509766 cites W4206211468 @default.
- W4308509766 cites W4210328114 @default.
- W4308509766 cites W4213124617 @default.
- W4308509766 cites W4293079662 @default.
- W4308509766 cites W4307823382 @default.
- W4308509766 doi "https://doi.org/10.3390/rs14215624" @default.
- W4308509766 hasPublicationYear "2022" @default.
- W4308509766 type Work @default.
- W4308509766 citedByCount "0" @default.
- W4308509766 crossrefType "journal-article" @default.
- W4308509766 hasAuthorship W4308509766A5009182769 @default.
- W4308509766 hasAuthorship W4308509766A5013446193 @default.
- W4308509766 hasAuthorship W4308509766A5036386497 @default.
- W4308509766 hasAuthorship W4308509766A5036811508 @default.
- W4308509766 hasAuthorship W4308509766A5049898739 @default.
- W4308509766 hasAuthorship W4308509766A5059727926 @default.
- W4308509766 hasAuthorship W4308509766A5090548589 @default.
- W4308509766 hasBestOaLocation W43085097661 @default.
- W4308509766 hasConcept C105795698 @default.
- W4308509766 hasConcept C115540264 @default.
- W4308509766 hasConcept C119857082 @default.
- W4308509766 hasConcept C12267149 @default.
- W4308509766 hasConcept C124101348 @default.
- W4308509766 hasConcept C153083717 @default.
- W4308509766 hasConcept C153180895 @default.
- W4308509766 hasConcept C154945302 @default.
- W4308509766 hasConcept C179717631 @default.
- W4308509766 hasConcept C205649164 @default.
- W4308509766 hasConcept C25989453 @default.
- W4308509766 hasConcept C33923547 @default.
- W4308509766 hasConcept C41008148 @default.
- W4308509766 hasConcept C50644808 @default.
- W4308509766 hasConcept C60908668 @default.
- W4308509766 hasConcept C62649853 @default.
- W4308509766 hasConcept C6557445 @default.
- W4308509766 hasConcept C83546350 @default.
- W4308509766 hasConcept C86803240 @default.
- W4308509766 hasConcept C87360688 @default.
- W4308509766 hasConceptScore W4308509766C105795698 @default.
- W4308509766 hasConceptScore W4308509766C115540264 @default.
- W4308509766 hasConceptScore W4308509766C119857082 @default.
- W4308509766 hasConceptScore W4308509766C12267149 @default.
- W4308509766 hasConceptScore W4308509766C124101348 @default.
- W4308509766 hasConceptScore W4308509766C153083717 @default.
- W4308509766 hasConceptScore W4308509766C153180895 @default.
- W4308509766 hasConceptScore W4308509766C154945302 @default.
- W4308509766 hasConceptScore W4308509766C179717631 @default.
- W4308509766 hasConceptScore W4308509766C205649164 @default.
- W4308509766 hasConceptScore W4308509766C25989453 @default.
- W4308509766 hasConceptScore W4308509766C33923547 @default.
- W4308509766 hasConceptScore W4308509766C41008148 @default.
- W4308509766 hasConceptScore W4308509766C50644808 @default.
- W4308509766 hasConceptScore W4308509766C60908668 @default.
- W4308509766 hasConceptScore W4308509766C62649853 @default.
- W4308509766 hasConceptScore W4308509766C6557445 @default.