Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308509801> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4308509801 endingPage "200" @default.
- W4308509801 startingPage "200" @default.
- W4308509801 abstract "The documents similarity metric is a substantial tool applied in areas such as determining topic in relation to documents, plagiarism detection, or problems necessary to capture the semantic, syntactic, or structural similarity of texts. Evaluated results of the similarity measure depend on the types of word represented and the problem statement and can be time-consuming. In this paper, we present a problem-independent algorithm of the similarity metric greedy texts similarity mapping (GTSM), which is computationally efficient to be applied for large datasets with any preferred word vectorization models. GTSM maps words in two texts based on a decision rule that evaluates word similarity and their importance to the texts. We compare it with the well-known word mover’s distance (WMD) algorithm in the k-nearest neighbors text classification problem and find that it leads to similar or better results. In the correlation evaluation task of similarity measures with human-judged scores, we demonstrate its higher correlation scores in comparison with WMD and sentence mover’s similarity (SMS) and show that GTSM is a decent alternative for both word-level and sentence-level tasks." @default.
- W4308509801 created "2022-11-12" @default.
- W4308509801 creator A5005679713 @default.
- W4308509801 creator A5021380909 @default.
- W4308509801 creator A5031261567 @default.
- W4308509801 creator A5053595206 @default.
- W4308509801 date "2022-11-08" @default.
- W4308509801 modified "2023-10-16" @default.
- W4308509801 title "Greedy Texts Similarity Mapping" @default.
- W4308509801 cites W1015675232 @default.
- W4308509801 cites W1529026127 @default.
- W4308509801 cites W1615991656 @default.
- W4308509801 cites W1978394996 @default.
- W4308509801 cites W1980867644 @default.
- W4308509801 cites W2060772891 @default.
- W4308509801 cites W2129250947 @default.
- W4308509801 cites W2142995284 @default.
- W4308509801 cites W2143668817 @default.
- W4308509801 cites W2148374900 @default.
- W4308509801 cites W2163380389 @default.
- W4308509801 cites W2165533158 @default.
- W4308509801 cites W2250539671 @default.
- W4308509801 cites W2564590796 @default.
- W4308509801 cites W2891378076 @default.
- W4308509801 cites W2950146322 @default.
- W4308509801 cites W3081886688 @default.
- W4308509801 cites W4210907736 @default.
- W4308509801 cites W4283329669 @default.
- W4308509801 cites W4284882427 @default.
- W4308509801 cites W4288064845 @default.
- W4308509801 cites W4297120310 @default.
- W4308509801 doi "https://doi.org/10.3390/computation10110200" @default.
- W4308509801 hasPublicationYear "2022" @default.
- W4308509801 type Work @default.
- W4308509801 citedByCount "0" @default.
- W4308509801 crossrefType "journal-article" @default.
- W4308509801 hasAuthorship W4308509801A5005679713 @default.
- W4308509801 hasAuthorship W4308509801A5021380909 @default.
- W4308509801 hasAuthorship W4308509801A5031261567 @default.
- W4308509801 hasAuthorship W4308509801A5053595206 @default.
- W4308509801 hasBestOaLocation W43085098011 @default.
- W4308509801 hasConcept C103278499 @default.
- W4308509801 hasConcept C115961682 @default.
- W4308509801 hasConcept C124101348 @default.
- W4308509801 hasConcept C130318100 @default.
- W4308509801 hasConcept C153180895 @default.
- W4308509801 hasConcept C154945302 @default.
- W4308509801 hasConcept C162324750 @default.
- W4308509801 hasConcept C176217482 @default.
- W4308509801 hasConcept C204321447 @default.
- W4308509801 hasConcept C21547014 @default.
- W4308509801 hasConcept C23123220 @default.
- W4308509801 hasConcept C2524010 @default.
- W4308509801 hasConcept C25343380 @default.
- W4308509801 hasConcept C2777530160 @default.
- W4308509801 hasConcept C33923547 @default.
- W4308509801 hasConcept C41008148 @default.
- W4308509801 hasConcept C82668687 @default.
- W4308509801 hasConcept C90805587 @default.
- W4308509801 hasConceptScore W4308509801C103278499 @default.
- W4308509801 hasConceptScore W4308509801C115961682 @default.
- W4308509801 hasConceptScore W4308509801C124101348 @default.
- W4308509801 hasConceptScore W4308509801C130318100 @default.
- W4308509801 hasConceptScore W4308509801C153180895 @default.
- W4308509801 hasConceptScore W4308509801C154945302 @default.
- W4308509801 hasConceptScore W4308509801C162324750 @default.
- W4308509801 hasConceptScore W4308509801C176217482 @default.
- W4308509801 hasConceptScore W4308509801C204321447 @default.
- W4308509801 hasConceptScore W4308509801C21547014 @default.
- W4308509801 hasConceptScore W4308509801C23123220 @default.
- W4308509801 hasConceptScore W4308509801C2524010 @default.
- W4308509801 hasConceptScore W4308509801C25343380 @default.
- W4308509801 hasConceptScore W4308509801C2777530160 @default.
- W4308509801 hasConceptScore W4308509801C33923547 @default.
- W4308509801 hasConceptScore W4308509801C41008148 @default.
- W4308509801 hasConceptScore W4308509801C82668687 @default.
- W4308509801 hasConceptScore W4308509801C90805587 @default.
- W4308509801 hasIssue "11" @default.
- W4308509801 hasLocation W43085098011 @default.
- W4308509801 hasLocation W43085098012 @default.
- W4308509801 hasOpenAccess W4308509801 @default.
- W4308509801 hasPrimaryLocation W43085098011 @default.
- W4308509801 hasRelatedWork W1540114044 @default.
- W4308509801 hasRelatedWork W1971648542 @default.
- W4308509801 hasRelatedWork W2015573458 @default.
- W4308509801 hasRelatedWork W201712113 @default.
- W4308509801 hasRelatedWork W2049988766 @default.
- W4308509801 hasRelatedWork W2125221595 @default.
- W4308509801 hasRelatedWork W2132438428 @default.
- W4308509801 hasRelatedWork W3029667796 @default.
- W4308509801 hasRelatedWork W333414154 @default.
- W4308509801 hasRelatedWork W4285226496 @default.
- W4308509801 hasVolume "10" @default.
- W4308509801 isParatext "false" @default.
- W4308509801 isRetracted "false" @default.
- W4308509801 workType "article" @default.