Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308509872> ?p ?o ?g. }
- W4308509872 endingPage "5625" @default.
- W4308509872 startingPage "5625" @default.
- W4308509872 abstract "Timely and accurate crop identification and mapping are of great significance for crop yield estimation, disaster warning, and food security. Early-season crop identification places higher demands on the quality and mining of time-series information than post-season mapping. In recent years, great strides have been made in the development of deep-learning algorithms, and the emergence of Sentinel-2 data with a higher temporal resolution has provided new opportunities for early-season crop identification. In this study, we aimed to fully exploit the potential of deep-learning algorithms and time-series Sentinel-2 data for early-season crop identification and early-season crop mapping. In this study, four classifiers, i.e., two deep-learning algorithms (one-dimensional convolutional networks and long and short-term memory networks) and two shallow machine-learning algorithms (a random forest algorithm and a support vector machine), were trained using early-season Sentinel-2 images and field samples collected in 2019. Then, these algorithms were applied to images and field samples for 2020 in the Shiyang River Basin. Twelve scenarios with different classifiers and time intervals were compared to determine the optimal combination for the earliest crop identification. The results show that: (1) the two deep-learning algorithms outperformed the two shallow machine-learning algorithms in early-season crop identification; (2) the combination of a one-dimensional convolutional network and 5-day interval time-series Sentinel-2 data outperformed the other schemes in obtaining the early-season crop identification time and achieving early mapping; and (3) the early-season crop identification mapping time in the Shiyang River Basin was identified as the end of July, and the overall classification accuracy reached 0.83. In addition, the early identification time for each crop was as follows: the wheat was in the flowering stage (mid-late June); the alfalfa was in the first harvest (mid-late June); the corn was in the early tassel stage (mid-July); the fennel and sunflower were in the flowering stage (late July); and the melons were in the fruiting stage (around late July). This study demonstrates the potential of using Sentinel-2 time-series data and deep-learning algorithms to achieve early-season crop identification, and this method is expected to provide new solutions and ideas for addressing early-season crop identification monitoring." @default.
- W4308509872 created "2022-11-12" @default.
- W4308509872 creator A5004168897 @default.
- W4308509872 creator A5005218250 @default.
- W4308509872 creator A5047607105 @default.
- W4308509872 creator A5049680425 @default.
- W4308509872 creator A5055115466 @default.
- W4308509872 creator A5078443769 @default.
- W4308509872 date "2022-11-07" @default.
- W4308509872 modified "2023-10-05" @default.
- W4308509872 title "Early-Season Crop Identification in the Shiyang River Basin Using a Deep Learning Algorithm and Time-Series Sentinel-2 Data" @default.
- W4308509872 cites W1991361881 @default.
- W4308509872 cites W1995378944 @default.
- W4308509872 cites W1998281138 @default.
- W4308509872 cites W2008085934 @default.
- W4308509872 cites W2018636632 @default.
- W4308509872 cites W2021662310 @default.
- W4308509872 cites W2039598117 @default.
- W4308509872 cites W2040667072 @default.
- W4308509872 cites W2062321700 @default.
- W4308509872 cites W2063479531 @default.
- W4308509872 cites W2067055509 @default.
- W4308509872 cites W2068094410 @default.
- W4308509872 cites W2069143585 @default.
- W4308509872 cites W2081345410 @default.
- W4308509872 cites W2082874195 @default.
- W4308509872 cites W2088666544 @default.
- W4308509872 cites W2090116710 @default.
- W4308509872 cites W2090231298 @default.
- W4308509872 cites W2168481151 @default.
- W4308509872 cites W2273708466 @default.
- W4308509872 cites W2325718943 @default.
- W4308509872 cites W2407655494 @default.
- W4308509872 cites W2464130106 @default.
- W4308509872 cites W2561750000 @default.
- W4308509872 cites W2578830027 @default.
- W4308509872 cites W2583513334 @default.
- W4308509872 cites W2610947800 @default.
- W4308509872 cites W2730238284 @default.
- W4308509872 cites W2745131289 @default.
- W4308509872 cites W2791592925 @default.
- W4308509872 cites W2805461187 @default.
- W4308509872 cites W2903282641 @default.
- W4308509872 cites W2911964244 @default.
- W4308509872 cites W2919115771 @default.
- W4308509872 cites W2950314938 @default.
- W4308509872 cites W2953757725 @default.
- W4308509872 cites W2972084355 @default.
- W4308509872 cites W2976696463 @default.
- W4308509872 cites W2999712229 @default.
- W4308509872 cites W3001402238 @default.
- W4308509872 cites W3033448968 @default.
- W4308509872 cites W3037002701 @default.
- W4308509872 cites W3089038181 @default.
- W4308509872 cites W3090592965 @default.
- W4308509872 cites W3096477768 @default.
- W4308509872 cites W3100996084 @default.
- W4308509872 cites W3182299891 @default.
- W4308509872 cites W3205696749 @default.
- W4308509872 cites W4210692134 @default.
- W4308509872 cites W4239510810 @default.
- W4308509872 cites W4244713694 @default.
- W4308509872 cites W4296776311 @default.
- W4308509872 doi "https://doi.org/10.3390/rs14215625" @default.
- W4308509872 hasPublicationYear "2022" @default.
- W4308509872 type Work @default.
- W4308509872 citedByCount "6" @default.
- W4308509872 countsByYear W43085098722023 @default.
- W4308509872 crossrefType "journal-article" @default.
- W4308509872 hasAuthorship W4308509872A5004168897 @default.
- W4308509872 hasAuthorship W4308509872A5005218250 @default.
- W4308509872 hasAuthorship W4308509872A5047607105 @default.
- W4308509872 hasAuthorship W4308509872A5049680425 @default.
- W4308509872 hasAuthorship W4308509872A5055115466 @default.
- W4308509872 hasAuthorship W4308509872A5078443769 @default.
- W4308509872 hasBestOaLocation W43085098721 @default.
- W4308509872 hasConcept C108583219 @default.
- W4308509872 hasConcept C11413529 @default.
- W4308509872 hasConcept C116834253 @default.
- W4308509872 hasConcept C119857082 @default.
- W4308509872 hasConcept C12267149 @default.
- W4308509872 hasConcept C137660486 @default.
- W4308509872 hasConcept C151406439 @default.
- W4308509872 hasConcept C154945302 @default.
- W4308509872 hasConcept C169258074 @default.
- W4308509872 hasConcept C18903297 @default.
- W4308509872 hasConcept C29825287 @default.
- W4308509872 hasConcept C41008148 @default.
- W4308509872 hasConcept C76155785 @default.
- W4308509872 hasConcept C86803240 @default.
- W4308509872 hasConceptScore W4308509872C108583219 @default.
- W4308509872 hasConceptScore W4308509872C11413529 @default.
- W4308509872 hasConceptScore W4308509872C116834253 @default.
- W4308509872 hasConceptScore W4308509872C119857082 @default.
- W4308509872 hasConceptScore W4308509872C12267149 @default.
- W4308509872 hasConceptScore W4308509872C137660486 @default.
- W4308509872 hasConceptScore W4308509872C151406439 @default.
- W4308509872 hasConceptScore W4308509872C154945302 @default.