Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308512202> ?p ?o ?g. }
- W4308512202 endingPage "140092" @default.
- W4308512202 startingPage "140092" @default.
- W4308512202 abstract "• A phase separation method consisting of alloying, nitriding, and etching is described. • Metallic impurities such as Ca, Fe, and Al and non-metallic impurities such as B and P are removed with high efficiency. • This simple, economical, and environmentally green process is conducted at a low temperature. • The process achieves purification and nanostructure formation simultaneously. Silicon (Si) is widely used in photovoltaics, semiconductors, and lithium-ion batteries but high purity is required in most applications. Conversion of metallurgical-grade Si (MG-Si) to Si with 4N purity and desired structure by an economical and environmentally friendly technique is still challenging, albeit desirable. Herein, an integrated metallurgy-materials technique is described to produce high-purity Si (99.99%) with a three-dimensional (3D) porous structure from metallurgical Si. This green and cost-effective strategy involves controllable phase separation of impurities from the Si matrix via Mg alloying, nitriding/dealloying (< 800 °C), and acid etching, which can remove metallic impurities (Fe, Al, Ca, et al.) and non-metallic impurities (B, P, et al) with the efficiency of above 90% and 80% respectively. The intermediate product of Mg 3 N 2 serves as both the pore-forming medium and impurity carrier /remover to separate impurities, improve the exposed area, and enhance dissolution of impurities. Different from conventional metallurgical processes, B and P are converted into MgB 2 and Mg 3 P 2 resulting in easy removal during phase separation. The as-obtained 3D porous Si shows outstanding Li-ion storage performance because of high-purity and unique architecture. This green process is effective in purifying Si and forming a porous structure on a large scale as demonstrated by the conversion of metallurgical Si to high-purity Si. Moreover, the integrated metallurgy-materials phase separation technique can be extended to other industrial applications." @default.
- W4308512202 created "2022-11-12" @default.
- W4308512202 creator A5001273180 @default.
- W4308512202 creator A5035801000 @default.
- W4308512202 creator A5043065335 @default.
- W4308512202 creator A5044713533 @default.
- W4308512202 creator A5047111567 @default.
- W4308512202 creator A5049788515 @default.
- W4308512202 creator A5049854878 @default.
- W4308512202 creator A5052495839 @default.
- W4308512202 creator A5068586195 @default.
- W4308512202 creator A5082289148 @default.
- W4308512202 creator A5084235417 @default.
- W4308512202 date "2023-02-01" @default.
- W4308512202 modified "2023-09-26" @default.
- W4308512202 title "Purifying Metallurgical-Grade Silicon to 4N with 3D Porous Structure by Integrated Metallurgy-Materials Phase Separation" @default.
- W4308512202 cites W1222594810 @default.
- W4308512202 cites W2026118437 @default.
- W4308512202 cites W2051792419 @default.
- W4308512202 cites W2068356068 @default.
- W4308512202 cites W2071978123 @default.
- W4308512202 cites W2081274246 @default.
- W4308512202 cites W2084221425 @default.
- W4308512202 cites W2127737942 @default.
- W4308512202 cites W2284573035 @default.
- W4308512202 cites W2311555985 @default.
- W4308512202 cites W2346427117 @default.
- W4308512202 cites W2423135887 @default.
- W4308512202 cites W2475111352 @default.
- W4308512202 cites W2528397192 @default.
- W4308512202 cites W2567301652 @default.
- W4308512202 cites W2582522012 @default.
- W4308512202 cites W2594641045 @default.
- W4308512202 cites W2727879052 @default.
- W4308512202 cites W2764217525 @default.
- W4308512202 cites W2766475683 @default.
- W4308512202 cites W2775453845 @default.
- W4308512202 cites W2781103769 @default.
- W4308512202 cites W2793247260 @default.
- W4308512202 cites W2793479969 @default.
- W4308512202 cites W2793553892 @default.
- W4308512202 cites W2804055958 @default.
- W4308512202 cites W2888797288 @default.
- W4308512202 cites W2902351509 @default.
- W4308512202 cites W2916056989 @default.
- W4308512202 cites W2921018988 @default.
- W4308512202 cites W2938758205 @default.
- W4308512202 cites W2939698998 @default.
- W4308512202 cites W2941165532 @default.
- W4308512202 cites W2954007430 @default.
- W4308512202 cites W2960806525 @default.
- W4308512202 cites W2964204636 @default.
- W4308512202 cites W2967474986 @default.
- W4308512202 cites W2967798644 @default.
- W4308512202 cites W2969308921 @default.
- W4308512202 cites W2973180199 @default.
- W4308512202 cites W2983424540 @default.
- W4308512202 cites W2983489599 @default.
- W4308512202 cites W3000040659 @default.
- W4308512202 cites W3002535966 @default.
- W4308512202 cites W3006968109 @default.
- W4308512202 cites W3023185664 @default.
- W4308512202 cites W3033337065 @default.
- W4308512202 cites W3093205043 @default.
- W4308512202 cites W3097796250 @default.
- W4308512202 cites W3107123194 @default.
- W4308512202 cites W3109559382 @default.
- W4308512202 cites W3112858359 @default.
- W4308512202 cites W3129971144 @default.
- W4308512202 cites W3134773071 @default.
- W4308512202 cites W3139422454 @default.
- W4308512202 cites W3148462881 @default.
- W4308512202 cites W3157289283 @default.
- W4308512202 cites W3202510580 @default.
- W4308512202 cites W4200521105 @default.
- W4308512202 cites W4206602421 @default.
- W4308512202 cites W4211173467 @default.
- W4308512202 cites W4245391663 @default.
- W4308512202 doi "https://doi.org/10.1016/j.cej.2022.140092" @default.
- W4308512202 hasPublicationYear "2023" @default.
- W4308512202 type Work @default.
- W4308512202 citedByCount "2" @default.
- W4308512202 countsByYear W43085122022023 @default.
- W4308512202 crossrefType "journal-article" @default.
- W4308512202 hasAuthorship W4308512202A5001273180 @default.
- W4308512202 hasAuthorship W4308512202A5035801000 @default.
- W4308512202 hasAuthorship W4308512202A5043065335 @default.
- W4308512202 hasAuthorship W4308512202A5044713533 @default.
- W4308512202 hasAuthorship W4308512202A5047111567 @default.
- W4308512202 hasAuthorship W4308512202A5049788515 @default.
- W4308512202 hasAuthorship W4308512202A5049854878 @default.
- W4308512202 hasAuthorship W4308512202A5052495839 @default.
- W4308512202 hasAuthorship W4308512202A5068586195 @default.
- W4308512202 hasAuthorship W4308512202A5082289148 @default.
- W4308512202 hasAuthorship W4308512202A5084235417 @default.
- W4308512202 hasConcept C11847115 @default.
- W4308512202 hasConcept C127413603 @default.
- W4308512202 hasConcept C159985019 @default.