Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308522435> ?p ?o ?g. }
- W4308522435 abstract "Abstract High-frequency monitoring of water quality in catchments brings along the challenge of post-processing large amounts of data. Moreover, monitoring stations are often remote and technical issues resulting in data gaps are common. Machine Learning algorithms can be applied to fill these gaps, and to a certain extent, for predictions and interpretation. The objectives of this study were (1) to evaluate six different Machine Learning models for gap-filling in a high-frequency nitrate and total-phosphorus concentration time series, (2) to showcase the potential added value (and limitations) of Machine Learning to interpret underlying processes, and (3) to study the limits of Machine Learning algorithms for predictions outside the training period. We used a four-year high-frequency dataset from a ditch draining one intensive dairy farm in the east of The Netherlands. Continuous time series of precipitation, evaporation, groundwater levels, discharge, turbidity, and nitrate or total-phosphorus were used as predictors for total-phosphorus and nitrate concentrations respectively. Our results showed that the Random Forest algorithm had the best performance to fill in data-gaps, with R 2 higher than 0.92 and short computation times. The feature importance helped understanding the changes in transport processes linked to water conservation measures and rain variability. Applying the Machine Learning model outside the training period resulted in a low performance, largely due to system changes (manure surplus and water conservation) which were not included as predictors. This study offers a valuable and novel example of how to use and interpret Machine Learning models for post-processing high-frequency water quality data." @default.
- W4308522435 created "2022-11-12" @default.
- W4308522435 creator A5026281389 @default.
- W4308522435 creator A5041956555 @default.
- W4308522435 creator A5048331447 @default.
- W4308522435 creator A5051424324 @default.
- W4308522435 creator A5065840144 @default.
- W4308522435 date "2022-11-08" @default.
- W4308522435 modified "2023-09-28" @default.
- W4308522435 title "Value and limitations of Machine Learning in high-frequency nutrient data for gap- filling, forecasting, and transport process interpretation" @default.
- W4308522435 cites W1638923567 @default.
- W4308522435 cites W1971219353 @default.
- W4308522435 cites W1978469672 @default.
- W4308522435 cites W2018683414 @default.
- W4308522435 cites W2043449394 @default.
- W4308522435 cites W2055208823 @default.
- W4308522435 cites W2057850952 @default.
- W4308522435 cites W2059698287 @default.
- W4308522435 cites W2063903930 @default.
- W4308522435 cites W2072116255 @default.
- W4308522435 cites W2081147588 @default.
- W4308522435 cites W2082199763 @default.
- W4308522435 cites W2087949664 @default.
- W4308522435 cites W2095704444 @default.
- W4308522435 cites W2096555119 @default.
- W4308522435 cites W2136195593 @default.
- W4308522435 cites W2145247115 @default.
- W4308522435 cites W2151802193 @default.
- W4308522435 cites W2327715841 @default.
- W4308522435 cites W2477041072 @default.
- W4308522435 cites W2516255137 @default.
- W4308522435 cites W2622801057 @default.
- W4308522435 cites W2760894977 @default.
- W4308522435 cites W28412257 @default.
- W4308522435 cites W2888317624 @default.
- W4308522435 cites W2911964244 @default.
- W4308522435 cites W2926585089 @default.
- W4308522435 cites W2953472772 @default.
- W4308522435 cites W2966684393 @default.
- W4308522435 cites W2973612265 @default.
- W4308522435 cites W2975926778 @default.
- W4308522435 cites W2998681661 @default.
- W4308522435 cites W2999667975 @default.
- W4308522435 cites W3032685738 @default.
- W4308522435 cites W3106300197 @default.
- W4308522435 cites W3106943852 @default.
- W4308522435 cites W3107589590 @default.
- W4308522435 cites W3128669126 @default.
- W4308522435 cites W3137559996 @default.
- W4308522435 cites W3163502814 @default.
- W4308522435 cites W3206456343 @default.
- W4308522435 cites W3211977441 @default.
- W4308522435 cites W3213311654 @default.
- W4308522435 cites W3214274361 @default.
- W4308522435 cites W4210538803 @default.
- W4308522435 cites W4235743828 @default.
- W4308522435 cites W4244238212 @default.
- W4308522435 cites W4245689303 @default.
- W4308522435 doi "https://doi.org/10.21203/rs.3.rs-2201325/v1" @default.
- W4308522435 hasPublicationYear "2022" @default.
- W4308522435 type Work @default.
- W4308522435 citedByCount "0" @default.
- W4308522435 crossrefType "posted-content" @default.
- W4308522435 hasAuthorship W4308522435A5026281389 @default.
- W4308522435 hasAuthorship W4308522435A5041956555 @default.
- W4308522435 hasAuthorship W4308522435A5048331447 @default.
- W4308522435 hasAuthorship W4308522435A5051424324 @default.
- W4308522435 hasAuthorship W4308522435A5065840144 @default.
- W4308522435 hasBestOaLocation W43085224351 @default.
- W4308522435 hasConcept C111368507 @default.
- W4308522435 hasConcept C11413529 @default.
- W4308522435 hasConcept C119857082 @default.
- W4308522435 hasConcept C127313418 @default.
- W4308522435 hasConcept C127413603 @default.
- W4308522435 hasConcept C154945302 @default.
- W4308522435 hasConcept C187320778 @default.
- W4308522435 hasConcept C18903297 @default.
- W4308522435 hasConcept C2778572946 @default.
- W4308522435 hasConcept C2780797713 @default.
- W4308522435 hasConcept C39432304 @default.
- W4308522435 hasConcept C41008148 @default.
- W4308522435 hasConcept C64016661 @default.
- W4308522435 hasConcept C76886044 @default.
- W4308522435 hasConcept C86803240 @default.
- W4308522435 hasConceptScore W4308522435C111368507 @default.
- W4308522435 hasConceptScore W4308522435C11413529 @default.
- W4308522435 hasConceptScore W4308522435C119857082 @default.
- W4308522435 hasConceptScore W4308522435C127313418 @default.
- W4308522435 hasConceptScore W4308522435C127413603 @default.
- W4308522435 hasConceptScore W4308522435C154945302 @default.
- W4308522435 hasConceptScore W4308522435C187320778 @default.
- W4308522435 hasConceptScore W4308522435C18903297 @default.
- W4308522435 hasConceptScore W4308522435C2778572946 @default.
- W4308522435 hasConceptScore W4308522435C2780797713 @default.
- W4308522435 hasConceptScore W4308522435C39432304 @default.
- W4308522435 hasConceptScore W4308522435C41008148 @default.
- W4308522435 hasConceptScore W4308522435C64016661 @default.
- W4308522435 hasConceptScore W4308522435C76886044 @default.
- W4308522435 hasConceptScore W4308522435C86803240 @default.
- W4308522435 hasLocation W43085224351 @default.