Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308528207> ?p ?o ?g. }
- W4308528207 abstract "Abstract Objectives The aim of this study is to perform tooth numbering using deep learning algorithms on digital dental photographs, and to evaluate the success of these algorithms in determining the presence of frenulum, gingival hyperplasia and gingival inflammation which play an important role in periodontal treatment planning. Materials and Methods Six-hundred-fifty-four (n = 654) intraoral photographs were included in the study. A total of 16795 teeth in all photographs were segmented and the numbering of the teeth was carried out according to the FDI system. Two-thousand-four-hundred-and-ninety-three frenulum attachments (n = 2493), 1211 gingival hyperplasia areas and 2956 gingival inflammation areas in the photographs were labeled using the segmentation method. Images were sized before artificial intelligence (AI) training and data set was separated as training, validation and test groups. Yolov5 architecture were used in the creation of the models. The confusion matrix system and ROC analysis were used in the statistical evaluation of the results. Results When results of study were evaluated; sensitivity, precision, F1 score and AUC for tooth numbering were 0.990, 0.784, 0.875, 0.989; for frenulum attachments were 0.894, 0.775, 0.830 and 0.827; for gingival hyperplasia were 0.757, 0.675, 0.714, 0.774; for gingival inflammation were 0.737, 0.823, 0.777, 0.802 (respectively). Conclusions There is a need for more comprehensive studies to be carried out on this subject by increasing the number of data and the number of parameters evaluated. Clinical relevance The current study showed that in the future, periodontal problem determination from dental photographs could be performed using AI systems." @default.
- W4308528207 created "2022-11-12" @default.
- W4308528207 creator A5003306637 @default.
- W4308528207 creator A5008677423 @default.
- W4308528207 creator A5008868356 @default.
- W4308528207 creator A5009427705 @default.
- W4308528207 creator A5035747313 @default.
- W4308528207 creator A5036756478 @default.
- W4308528207 creator A5046810190 @default.
- W4308528207 creator A5062524948 @default.
- W4308528207 creator A5080050332 @default.
- W4308528207 creator A5089127491 @default.
- W4308528207 creator A5089714983 @default.
- W4308528207 date "2022-11-08" @default.
- W4308528207 modified "2023-09-27" @default.
- W4308528207 title "Detection of Tooth Numbering, Frenulum, Gingival Hyperplasia and Gingival Inflammation on Dental Photographs Using Convolutional Neural Network Algorithms: An Initial Study" @default.
- W4308528207 cites W1971587296 @default.
- W4308528207 cites W1972717581 @default.
- W4308528207 cites W1987934049 @default.
- W4308528207 cites W2001488300 @default.
- W4308528207 cites W2021185949 @default.
- W4308528207 cites W2045264957 @default.
- W4308528207 cites W2055825987 @default.
- W4308528207 cites W2069406093 @default.
- W4308528207 cites W2074860865 @default.
- W4308528207 cites W2106022749 @default.
- W4308528207 cites W2113408951 @default.
- W4308528207 cites W2134975052 @default.
- W4308528207 cites W2141794549 @default.
- W4308528207 cites W2146967803 @default.
- W4308528207 cites W2166062997 @default.
- W4308528207 cites W2187175175 @default.
- W4308528207 cites W2581490241 @default.
- W4308528207 cites W2888396499 @default.
- W4308528207 cites W2906705315 @default.
- W4308528207 cites W2991580181 @default.
- W4308528207 cites W2999494042 @default.
- W4308528207 cites W3022243115 @default.
- W4308528207 cites W3023997891 @default.
- W4308528207 cites W3027234488 @default.
- W4308528207 cites W3033358104 @default.
- W4308528207 cites W3040455124 @default.
- W4308528207 cites W3088255189 @default.
- W4308528207 cites W3095389414 @default.
- W4308528207 cites W3099564155 @default.
- W4308528207 cites W3108204254 @default.
- W4308528207 cites W3111600122 @default.
- W4308528207 cites W3124632865 @default.
- W4308528207 cites W3131328339 @default.
- W4308528207 cites W3138628917 @default.
- W4308528207 cites W3154707151 @default.
- W4308528207 cites W3194416978 @default.
- W4308528207 cites W3203432058 @default.
- W4308528207 cites W3216252717 @default.
- W4308528207 cites W4223514638 @default.
- W4308528207 cites W4284900145 @default.
- W4308528207 doi "https://doi.org/10.21203/rs.3.rs-2222628/v1" @default.
- W4308528207 hasPublicationYear "2022" @default.
- W4308528207 type Work @default.
- W4308528207 citedByCount "0" @default.
- W4308528207 crossrefType "posted-content" @default.
- W4308528207 hasAuthorship W4308528207A5003306637 @default.
- W4308528207 hasAuthorship W4308528207A5008677423 @default.
- W4308528207 hasAuthorship W4308528207A5008868356 @default.
- W4308528207 hasAuthorship W4308528207A5009427705 @default.
- W4308528207 hasAuthorship W4308528207A5035747313 @default.
- W4308528207 hasAuthorship W4308528207A5036756478 @default.
- W4308528207 hasAuthorship W4308528207A5046810190 @default.
- W4308528207 hasAuthorship W4308528207A5062524948 @default.
- W4308528207 hasAuthorship W4308528207A5080050332 @default.
- W4308528207 hasAuthorship W4308528207A5089127491 @default.
- W4308528207 hasAuthorship W4308528207A5089714983 @default.
- W4308528207 hasBestOaLocation W43085282071 @default.
- W4308528207 hasConcept C11413529 @default.
- W4308528207 hasConcept C191916993 @default.
- W4308528207 hasConcept C199343813 @default.
- W4308528207 hasConcept C2780791200 @default.
- W4308528207 hasConcept C2909956956 @default.
- W4308528207 hasConcept C29694066 @default.
- W4308528207 hasConcept C41008148 @default.
- W4308528207 hasConcept C71924100 @default.
- W4308528207 hasConceptScore W4308528207C11413529 @default.
- W4308528207 hasConceptScore W4308528207C191916993 @default.
- W4308528207 hasConceptScore W4308528207C199343813 @default.
- W4308528207 hasConceptScore W4308528207C2780791200 @default.
- W4308528207 hasConceptScore W4308528207C2909956956 @default.
- W4308528207 hasConceptScore W4308528207C29694066 @default.
- W4308528207 hasConceptScore W4308528207C41008148 @default.
- W4308528207 hasConceptScore W4308528207C71924100 @default.
- W4308528207 hasLocation W43085282071 @default.
- W4308528207 hasOpenAccess W4308528207 @default.
- W4308528207 hasPrimaryLocation W43085282071 @default.
- W4308528207 hasRelatedWork W1975138301 @default.
- W4308528207 hasRelatedWork W2040022499 @default.
- W4308528207 hasRelatedWork W2050605791 @default.
- W4308528207 hasRelatedWork W2117708209 @default.
- W4308528207 hasRelatedWork W2131621620 @default.
- W4308528207 hasRelatedWork W2351491280 @default.
- W4308528207 hasRelatedWork W2386767533 @default.
- W4308528207 hasRelatedWork W2748952813 @default.