Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308531312> ?p ?o ?g. }
- W4308531312 endingPage "4173" @default.
- W4308531312 startingPage "4173" @default.
- W4308531312 abstract "Spam represents a genuine irritation for email users, since it often disturbs them during their work or free time. Machine learning approaches are commonly utilized as the engine of spam detection solutions, as they are efficient and usually exhibit a high degree of classification accuracy. Nevertheless, it sometimes happens that good messages are labeled as spam and, more often, some spam emails enter into the inbox as good ones. This manuscript proposes a novel email spam detection approach by combining machine learning models with an enhanced sine cosine swarm intelligence algorithm to counter the deficiencies of the existing techniques. The introduced novel sine cosine was adopted for training logistic regression and for tuning XGBoost models as part of the hybrid machine learning-metaheuristics framework. The developed framework has been validated on two public high-dimensional spam benchmark datasets (CSDMC2010 and TurkishEmail), and the extensive experiments conducted have shown that the model successfully deals with high-degree data. The comparative analysis with other cutting-edge spam detection models, also based on metaheuristics, has shown that the proposed hybrid method obtains superior performance in terms of accuracy, precision, recall, f1 score, and other relevant classification metrics. Additionally, the empirically established superiority of the proposed method is validated using rigid statistical tests." @default.
- W4308531312 created "2022-11-12" @default.
- W4308531312 creator A5006488537 @default.
- W4308531312 creator A5036738895 @default.
- W4308531312 creator A5047844943 @default.
- W4308531312 creator A5061798785 @default.
- W4308531312 creator A5064081550 @default.
- W4308531312 creator A5072453849 @default.
- W4308531312 creator A5072469505 @default.
- W4308531312 date "2022-11-08" @default.
- W4308531312 modified "2023-10-16" @default.
- W4308531312 title "Application of Natural Language Processing and Machine Learning Boosted with Swarm Intelligence for Spam Email Filtering" @default.
- W4308531312 cites W1999077811 @default.
- W4308531312 cites W1999284878 @default.
- W4308531312 cites W2000950277 @default.
- W4308531312 cites W2016944307 @default.
- W4308531312 cites W2043845271 @default.
- W4308531312 cites W2057848726 @default.
- W4308531312 cites W2061438946 @default.
- W4308531312 cites W2096166399 @default.
- W4308531312 cites W2136093924 @default.
- W4308531312 cites W2149848331 @default.
- W4308531312 cites W2153351685 @default.
- W4308531312 cites W2156652258 @default.
- W4308531312 cites W2156773695 @default.
- W4308531312 cites W2157833270 @default.
- W4308531312 cites W2170332815 @default.
- W4308531312 cites W2232317135 @default.
- W4308531312 cites W2290883490 @default.
- W4308531312 cites W2576404523 @default.
- W4308531312 cites W2685702996 @default.
- W4308531312 cites W2782813169 @default.
- W4308531312 cites W2793412634 @default.
- W4308531312 cites W2914888512 @default.
- W4308531312 cites W2919979744 @default.
- W4308531312 cites W2921150469 @default.
- W4308531312 cites W3001336443 @default.
- W4308531312 cites W3011776577 @default.
- W4308531312 cites W3014522558 @default.
- W4308531312 cites W3015228848 @default.
- W4308531312 cites W3047314667 @default.
- W4308531312 cites W3047928395 @default.
- W4308531312 cites W3088753106 @default.
- W4308531312 cites W3093758045 @default.
- W4308531312 cites W3094049489 @default.
- W4308531312 cites W3105750153 @default.
- W4308531312 cites W3118299338 @default.
- W4308531312 cites W3119051141 @default.
- W4308531312 cites W3128098287 @default.
- W4308531312 cites W3137596434 @default.
- W4308531312 cites W3142522002 @default.
- W4308531312 cites W3161588687 @default.
- W4308531312 cites W3169502702 @default.
- W4308531312 cites W3173968286 @default.
- W4308531312 cites W3177327711 @default.
- W4308531312 cites W3184866730 @default.
- W4308531312 cites W3194627252 @default.
- W4308531312 cites W3195107722 @default.
- W4308531312 cites W3195446130 @default.
- W4308531312 cites W3198932021 @default.
- W4308531312 cites W3208899803 @default.
- W4308531312 cites W3209147979 @default.
- W4308531312 cites W3209420330 @default.
- W4308531312 cites W4200281531 @default.
- W4308531312 cites W4200349868 @default.
- W4308531312 cites W4210306814 @default.
- W4308531312 cites W4210977106 @default.
- W4308531312 cites W4212966226 @default.
- W4308531312 cites W4220970363 @default.
- W4308531312 cites W4224237294 @default.
- W4308531312 cites W4241727697 @default.
- W4308531312 cites W4243858847 @default.
- W4308531312 cites W4282945662 @default.
- W4308531312 cites W4283721511 @default.
- W4308531312 cites W4284702203 @default.
- W4308531312 cites W4285670724 @default.
- W4308531312 cites W4292083457 @default.
- W4308531312 doi "https://doi.org/10.3390/math10224173" @default.
- W4308531312 hasPublicationYear "2022" @default.
- W4308531312 type Work @default.
- W4308531312 citedByCount "19" @default.
- W4308531312 countsByYear W43085313122022 @default.
- W4308531312 countsByYear W43085313122023 @default.
- W4308531312 crossrefType "journal-article" @default.
- W4308531312 hasAuthorship W4308531312A5006488537 @default.
- W4308531312 hasAuthorship W4308531312A5036738895 @default.
- W4308531312 hasAuthorship W4308531312A5047844943 @default.
- W4308531312 hasAuthorship W4308531312A5061798785 @default.
- W4308531312 hasAuthorship W4308531312A5064081550 @default.
- W4308531312 hasAuthorship W4308531312A5072453849 @default.
- W4308531312 hasAuthorship W4308531312A5072469505 @default.
- W4308531312 hasBestOaLocation W43085313121 @default.
- W4308531312 hasConcept C109718341 @default.
- W4308531312 hasConcept C119857082 @default.
- W4308531312 hasConcept C124101348 @default.
- W4308531312 hasConcept C13280743 @default.
- W4308531312 hasConcept C13672336 @default.
- W4308531312 hasConcept C154945302 @default.