Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308532812> ?p ?o ?g. }
- W4308532812 endingPage "107459" @default.
- W4308532812 startingPage "107459" @default.
- W4308532812 abstract "• Different soil to water ratios can affect prediction performance using Vis-NIR and pXRF spectra. • Prediction performance of EC and pH were affected by soil sampling strategies. • Vis-NIR spectra had higher prediction performance compared to pXRF. • Combined Vis-NIR and pXRF spectra had no improvement on prediction accuracy. Soil electrical conductivity (EC) and pH play a critical role in managing agricultural productivity. We investigated the effect of soil to water ratios (1:1, 1:2.5, 1:5) and sampling strategies (surface, profile wall, and surface + profile wall) on prediction accuracy using individual and combined visible near infrared (Vis-NIR) and portable X-ray fluorescence (pXRF) spectra with machine learning algorithms for EC and pH. In total, 200 soil samples were collected from the soil surface (100 soil samples) and profile wall (100 soil samples) in pasture lands in Eskisehir, Türkiye. The soil samples were analyzed by considering soil to water ratios (1:1, 1:2.5, 1:5) for EC and pH and scanned by Vis-NIR (350–2500 nm) and pXRF (0–45 keV). In total 54 different predictor models were tested to achieve the highest prediction accuracy for both EC and pH. The seven machine learning regressions (elastic net, k-nearest neighbors, lasso, partial least squares, random forest, ridge, and support vector machine-linear) were applied in modeling with calibration (70 % soil samples) and validation (30 % soil samples) datasets for each model. The results suggested that the EC 1:2.5 and EC 1:5 ratios had relatively higher prediction accuracy (r = 0.95, R 2 = 0.93, RMSE = 0.58, MAE = 0.46, RPD = 3.57, and RPIQ = 5.33) using Vis-NIR spectra with partial least squares and support vector machine-linear models in profile wall compared to other sampling strategies and EC 1:1 ratio. The pH 1:2.5 ratio had relatively higher prediction accuracy (r = 0.90, R 2 = 0.81, RMSE = 0.07, MAE = 0.06, RPD = 2.49, and RPIQ = 3.71) using Vis-NIR spectra with random forest model in profile wall compared to other sampling strategies and pH 1:1 and pH 1:5 ratios. In addition, combined Vis-NIR and pXRF spectra had no improvement in prediction accuracy. Finally, it can be concluded that the prediction accuracy is affected by soil to water ratios and sampling strategies. Individual Vis-NIR spectra can reach the highest prediction accuracy for EC and pH compared to combined pXRF and Vis-NIR spectra." @default.
- W4308532812 created "2022-11-12" @default.
- W4308532812 creator A5029123579 @default.
- W4308532812 creator A5059324567 @default.
- W4308532812 creator A5067273578 @default.
- W4308532812 creator A5070443554 @default.
- W4308532812 date "2022-12-01" @default.
- W4308532812 modified "2023-10-18" @default.
- W4308532812 title "Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra" @default.
- W4308532812 cites W1547518713 @default.
- W4308532812 cites W1592341820 @default.
- W4308532812 cites W1951724000 @default.
- W4308532812 cites W1960820770 @default.
- W4308532812 cites W1969655639 @default.
- W4308532812 cites W1976741858 @default.
- W4308532812 cites W1976877536 @default.
- W4308532812 cites W1984114559 @default.
- W4308532812 cites W2002140795 @default.
- W4308532812 cites W2006066202 @default.
- W4308532812 cites W2009366035 @default.
- W4308532812 cites W2062506659 @default.
- W4308532812 cites W2066722804 @default.
- W4308532812 cites W2068431090 @default.
- W4308532812 cites W2068856498 @default.
- W4308532812 cites W2077033502 @default.
- W4308532812 cites W2077621749 @default.
- W4308532812 cites W2077689075 @default.
- W4308532812 cites W2079770016 @default.
- W4308532812 cites W2081008074 @default.
- W4308532812 cites W2091597782 @default.
- W4308532812 cites W2109606373 @default.
- W4308532812 cites W2109616498 @default.
- W4308532812 cites W2110582217 @default.
- W4308532812 cites W2139895310 @default.
- W4308532812 cites W2151362728 @default.
- W4308532812 cites W2155300412 @default.
- W4308532812 cites W2163462642 @default.
- W4308532812 cites W2298139521 @default.
- W4308532812 cites W2410552594 @default.
- W4308532812 cites W2425993113 @default.
- W4308532812 cites W2460397074 @default.
- W4308532812 cites W2753138521 @default.
- W4308532812 cites W2769689104 @default.
- W4308532812 cites W2782441756 @default.
- W4308532812 cites W2784062288 @default.
- W4308532812 cites W2794047253 @default.
- W4308532812 cites W2885796589 @default.
- W4308532812 cites W2888610957 @default.
- W4308532812 cites W2898588733 @default.
- W4308532812 cites W2901004014 @default.
- W4308532812 cites W2909099826 @default.
- W4308532812 cites W2912358801 @default.
- W4308532812 cites W2946763671 @default.
- W4308532812 cites W2950626785 @default.
- W4308532812 cites W2968204211 @default.
- W4308532812 cites W2977218533 @default.
- W4308532812 cites W2981709302 @default.
- W4308532812 cites W2997081924 @default.
- W4308532812 cites W2997958627 @default.
- W4308532812 cites W3002911681 @default.
- W4308532812 cites W3003493504 @default.
- W4308532812 cites W3014115359 @default.
- W4308532812 cites W3080282762 @default.
- W4308532812 cites W3090872058 @default.
- W4308532812 cites W3091935672 @default.
- W4308532812 cites W3112319399 @default.
- W4308532812 cites W3116031798 @default.
- W4308532812 cites W3126718907 @default.
- W4308532812 cites W3127446878 @default.
- W4308532812 cites W3130067414 @default.
- W4308532812 cites W3146097469 @default.
- W4308532812 cites W3163348276 @default.
- W4308532812 cites W3167157040 @default.
- W4308532812 cites W3182282753 @default.
- W4308532812 cites W3189633718 @default.
- W4308532812 cites W3217743829 @default.
- W4308532812 cites W4200491976 @default.
- W4308532812 cites W4206111992 @default.
- W4308532812 cites W4210324263 @default.
- W4308532812 cites W4213171714 @default.
- W4308532812 cites W4229044060 @default.
- W4308532812 cites W4284702825 @default.
- W4308532812 doi "https://doi.org/10.1016/j.compag.2022.107459" @default.
- W4308532812 hasPublicationYear "2022" @default.
- W4308532812 type Work @default.
- W4308532812 citedByCount "2" @default.
- W4308532812 countsByYear W43085328122023 @default.
- W4308532812 crossrefType "journal-article" @default.
- W4308532812 hasAuthorship W4308532812A5029123579 @default.
- W4308532812 hasAuthorship W4308532812A5059324567 @default.
- W4308532812 hasAuthorship W4308532812A5067273578 @default.
- W4308532812 hasAuthorship W4308532812A5070443554 @default.
- W4308532812 hasConcept C105795698 @default.
- W4308532812 hasConcept C106131492 @default.
- W4308532812 hasConcept C140779682 @default.
- W4308532812 hasConcept C159390177 @default.
- W4308532812 hasConcept C185592680 @default.
- W4308532812 hasConcept C31972630 @default.