Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308542549> ?p ?o ?g. }
- W4308542549 endingPage "116955" @default.
- W4308542549 startingPage "116955" @default.
- W4308542549 abstract "Hole transport layers (HTLs) are one of the most important components of bulk heterojunction polymer solar cells (BHJ PSCs), having functions of optimizing interface, adjusting the energy match, and helping obtain higher PCE. Inorganic p-type semiconductors are alternative HTLs due to their chemical stability, high mobility, high transparency, and applicable valence band (VB) energy level. In this work, interlayer engineering in BHJ PSC was performed using solution-processed p-type nickel oxide (NiO) as the HTL. NiO nanostructures were synthesized by anodic potentiostatic and cyclic voltammetry (CV) electrodeposition methods. Simple adjustment of the applied potential regime and electrodeposition parameters led to considerable structural and electrochemical changes in the resulting NiO. Eventually, the best sample was selected in terms of suitable surface conductivity, high optical transparency, and appropriate energy levels. NiO nanostructures with FCC crystal structure synthesized by anodic potentiostatic electrodeposition showed conductivity of 0.038 mS.cm−1 and charge mobility of 2.01 cm2.V−1s−1, respectively, about 30.2 % and 24.8 % higher than the NiO synthesized by CV. The anodic potentiostatic electrodeposition method increased the photovoltaic performance of the PSCs by 43 % compared to the CV method. The average power conversion efficiencies for the anodic potentiostatic and CV methods were 2.95 % and 4.21 %, respectively. The PCE of these cells was about 13 % and 62 % higher than that considered for the reference device prepared based on the PEDOT:PSS HTL." @default.
- W4308542549 created "2022-11-12" @default.
- W4308542549 creator A5012742619 @default.
- W4308542549 creator A5017820667 @default.
- W4308542549 creator A5066075988 @default.
- W4308542549 date "2022-12-01" @default.
- W4308542549 modified "2023-09-23" @default.
- W4308542549 title "Electrochemical deposition of NiO bunsenite nanostructures with different morphologies as the hole transport layer in polymer solar cells" @default.
- W4308542549 cites W1551566472 @default.
- W4308542549 cites W1850564828 @default.
- W4308542549 cites W1860018006 @default.
- W4308542549 cites W1963737605 @default.
- W4308542549 cites W1973435636 @default.
- W4308542549 cites W1973724735 @default.
- W4308542549 cites W1974284550 @default.
- W4308542549 cites W1988548693 @default.
- W4308542549 cites W1990057193 @default.
- W4308542549 cites W1995704516 @default.
- W4308542549 cites W1999603523 @default.
- W4308542549 cites W2000260042 @default.
- W4308542549 cites W2007787704 @default.
- W4308542549 cites W2007868549 @default.
- W4308542549 cites W2009778288 @default.
- W4308542549 cites W2009789896 @default.
- W4308542549 cites W2021632306 @default.
- W4308542549 cites W2021860426 @default.
- W4308542549 cites W2022028774 @default.
- W4308542549 cites W2025709375 @default.
- W4308542549 cites W2029290940 @default.
- W4308542549 cites W2038964563 @default.
- W4308542549 cites W2051431812 @default.
- W4308542549 cites W2053406108 @default.
- W4308542549 cites W2054651949 @default.
- W4308542549 cites W2056333199 @default.
- W4308542549 cites W2058535494 @default.
- W4308542549 cites W2067386096 @default.
- W4308542549 cites W2070783785 @default.
- W4308542549 cites W2074877809 @default.
- W4308542549 cites W2075505026 @default.
- W4308542549 cites W2077511383 @default.
- W4308542549 cites W2078807245 @default.
- W4308542549 cites W2084854782 @default.
- W4308542549 cites W2086884002 @default.
- W4308542549 cites W2089597144 @default.
- W4308542549 cites W2092034337 @default.
- W4308542549 cites W2092836746 @default.
- W4308542549 cites W2093086650 @default.
- W4308542549 cites W2118630845 @default.
- W4308542549 cites W2120041501 @default.
- W4308542549 cites W2131579296 @default.
- W4308542549 cites W2213914400 @default.
- W4308542549 cites W2260522996 @default.
- W4308542549 cites W2282754025 @default.
- W4308542549 cites W2335428772 @default.
- W4308542549 cites W2460491563 @default.
- W4308542549 cites W2464340837 @default.
- W4308542549 cites W2479521434 @default.
- W4308542549 cites W2511356511 @default.
- W4308542549 cites W2516060076 @default.
- W4308542549 cites W2564509260 @default.
- W4308542549 cites W2589693101 @default.
- W4308542549 cites W2594399414 @default.
- W4308542549 cites W2613876071 @default.
- W4308542549 cites W2616129231 @default.
- W4308542549 cites W2745911597 @default.
- W4308542549 cites W2781938557 @default.
- W4308542549 cites W2795222006 @default.
- W4308542549 cites W2807398893 @default.
- W4308542549 cites W2809217121 @default.
- W4308542549 cites W2883253231 @default.
- W4308542549 cites W2883606399 @default.
- W4308542549 cites W2891187774 @default.
- W4308542549 cites W2894815970 @default.
- W4308542549 cites W2897056259 @default.
- W4308542549 cites W2902135886 @default.
- W4308542549 cites W2902384662 @default.
- W4308542549 cites W2919164532 @default.
- W4308542549 cites W2938424951 @default.
- W4308542549 cites W2967092426 @default.
- W4308542549 cites W2984796372 @default.
- W4308542549 cites W2995857820 @default.
- W4308542549 cites W2998462293 @default.
- W4308542549 cites W2998788503 @default.
- W4308542549 cites W3011202361 @default.
- W4308542549 cites W3013619322 @default.
- W4308542549 cites W3016437959 @default.
- W4308542549 cites W3022829573 @default.
- W4308542549 cites W3084645426 @default.
- W4308542549 cites W3108072496 @default.
- W4308542549 cites W3110022977 @default.
- W4308542549 cites W3119135795 @default.
- W4308542549 cites W3142369127 @default.
- W4308542549 cites W3217039615 @default.
- W4308542549 cites W4200134113 @default.
- W4308542549 cites W4210261154 @default.
- W4308542549 cites W4247918551 @default.
- W4308542549 doi "https://doi.org/10.1016/j.jelechem.2022.116955" @default.
- W4308542549 hasPublicationYear "2022" @default.