Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308551332> ?p ?o ?g. }
- W4308551332 endingPage "7615" @default.
- W4308551332 startingPage "7603" @default.
- W4308551332 abstract "Predicting the survival of cancer patients provides prognostic information and therapeutic guidance. However, improved prediction models are needed for use in diagnosis and treatment.This study aimed to identify genomic prognostic biomarkers related to colon cancer (CC) based on computational data and to develop survival prediction models.We performed machine-learning (ML) analysis to screen pathogenic survival-related driver genes related to patient prognosis by integrating copy number variation and gene expression data. Moreover, in silico system analysis was performed to clinically assess data from ML analysis, and we identified RABGAP1L, MYH9, and DRD4 as candidate genes. These three genes and tumor stages were used to generate survival prediction models. Moreover, the genes were validated by experimental and clinical analyses, and the theranostic application of the survival prediction models was assessed.RABGAP1L, MYH9, and DRD4 were identified as survival-related candidate genes by ML and in silico system analysis. The survival prediction model using the expression of the three genes showed higher predictive performance when applied to predict the prognosis of CC patients. A series of functional analyses revealed that each knockdown of three genes reduced the protumor activity of CC cells. In particular, validation with an independent cohort of CC patients confirmed that the coexpression of MYH9 and DRD4 gene expression reflected poorer clinical outcomes in terms of overall survival and disease-free survival.Our survival prediction approach will contribute to providing information on patients and developing a therapeutic strategy for CC patients." @default.
- W4308551332 created "2022-11-12" @default.
- W4308551332 creator A5014471784 @default.
- W4308551332 creator A5023173605 @default.
- W4308551332 creator A5029229550 @default.
- W4308551332 creator A5071676695 @default.
- W4308551332 creator A5072976623 @default.
- W4308551332 creator A5081247408 @default.
- W4308551332 creator A5089277539 @default.
- W4308551332 creator A5091063375 @default.
- W4308551332 date "2022-11-07" @default.
- W4308551332 modified "2023-10-12" @default.
- W4308551332 title "Machine learning with in silico analysis markedly improves survival prediction modeling in colon cancer patients" @default.
- W4308551332 cites W1968667083 @default.
- W4308551332 cites W1980740976 @default.
- W4308551332 cites W2000317813 @default.
- W4308551332 cites W2004465491 @default.
- W4308551332 cites W2025620752 @default.
- W4308551332 cites W2029175285 @default.
- W4308551332 cites W2044695669 @default.
- W4308551332 cites W2062584010 @default.
- W4308551332 cites W2087684630 @default.
- W4308551332 cites W2109303707 @default.
- W4308551332 cites W2111547563 @default.
- W4308551332 cites W2127594372 @default.
- W4308551332 cites W2135056923 @default.
- W4308551332 cites W2148591031 @default.
- W4308551332 cites W2153309788 @default.
- W4308551332 cites W2157852151 @default.
- W4308551332 cites W2165759834 @default.
- W4308551332 cites W2167190345 @default.
- W4308551332 cites W2179438025 @default.
- W4308551332 cites W2262414037 @default.
- W4308551332 cites W2619480236 @default.
- W4308551332 cites W2757722543 @default.
- W4308551332 cites W2791315675 @default.
- W4308551332 cites W2799451098 @default.
- W4308551332 cites W2898434771 @default.
- W4308551332 cites W2911233690 @default.
- W4308551332 cites W2943170466 @default.
- W4308551332 cites W2949821018 @default.
- W4308551332 cites W2976951111 @default.
- W4308551332 cites W2981650714 @default.
- W4308551332 cites W2985789142 @default.
- W4308551332 cites W2995579012 @default.
- W4308551332 cites W3005750902 @default.
- W4308551332 cites W3014921497 @default.
- W4308551332 cites W3095135394 @default.
- W4308551332 cites W3100369282 @default.
- W4308551332 cites W3118577024 @default.
- W4308551332 cites W3192726251 @default.
- W4308551332 cites W3211474640 @default.
- W4308551332 cites W4200537911 @default.
- W4308551332 cites W4205350350 @default.
- W4308551332 doi "https://doi.org/10.1002/cam4.5420" @default.
- W4308551332 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36345155" @default.
- W4308551332 hasPublicationYear "2022" @default.
- W4308551332 type Work @default.
- W4308551332 citedByCount "2" @default.
- W4308551332 countsByYear W43085513322023 @default.
- W4308551332 crossrefType "journal-article" @default.
- W4308551332 hasAuthorship W4308551332A5014471784 @default.
- W4308551332 hasAuthorship W4308551332A5023173605 @default.
- W4308551332 hasAuthorship W4308551332A5029229550 @default.
- W4308551332 hasAuthorship W4308551332A5071676695 @default.
- W4308551332 hasAuthorship W4308551332A5072976623 @default.
- W4308551332 hasAuthorship W4308551332A5081247408 @default.
- W4308551332 hasAuthorship W4308551332A5089277539 @default.
- W4308551332 hasAuthorship W4308551332A5091063375 @default.
- W4308551332 hasBestOaLocation W43085513321 @default.
- W4308551332 hasConcept C104317684 @default.
- W4308551332 hasConcept C10515644 @default.
- W4308551332 hasConcept C121608353 @default.
- W4308551332 hasConcept C126322002 @default.
- W4308551332 hasConcept C143998085 @default.
- W4308551332 hasConcept C2775905019 @default.
- W4308551332 hasConcept C3019894029 @default.
- W4308551332 hasConcept C3020167199 @default.
- W4308551332 hasConcept C50382708 @default.
- W4308551332 hasConcept C526805850 @default.
- W4308551332 hasConcept C54355233 @default.
- W4308551332 hasConcept C60644358 @default.
- W4308551332 hasConcept C69991583 @default.
- W4308551332 hasConcept C70721500 @default.
- W4308551332 hasConcept C71924100 @default.
- W4308551332 hasConcept C86803240 @default.
- W4308551332 hasConceptScore W4308551332C104317684 @default.
- W4308551332 hasConceptScore W4308551332C10515644 @default.
- W4308551332 hasConceptScore W4308551332C121608353 @default.
- W4308551332 hasConceptScore W4308551332C126322002 @default.
- W4308551332 hasConceptScore W4308551332C143998085 @default.
- W4308551332 hasConceptScore W4308551332C2775905019 @default.
- W4308551332 hasConceptScore W4308551332C3019894029 @default.
- W4308551332 hasConceptScore W4308551332C3020167199 @default.
- W4308551332 hasConceptScore W4308551332C50382708 @default.
- W4308551332 hasConceptScore W4308551332C526805850 @default.
- W4308551332 hasConceptScore W4308551332C54355233 @default.
- W4308551332 hasConceptScore W4308551332C60644358 @default.