Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308554392> ?p ?o ?g. }
- W4308554392 abstract "Background Given the opportunities created by artificial intelligence (AI) based decision support systems in healthcare, the vital question is whether clinicians are willing to use this technology as an integral part of clinical workflow. Purpose This study leverages validated questions to formulate an online survey and consequently explore cognitive human factors influencing clinicians' intention to use an AI-based Blood Utilization Calculator (BUC), an AI system embedded in the electronic health record that delivers data-driven personalized recommendations for the number of packed red blood cells to transfuse for a given patient. Method A purposeful sampling strategy was used to exclusively include BUC users who are clinicians in a university hospital in Wisconsin. We recruited 119 BUC users who completed the entire survey. We leveraged structural equation modeling to capture the direct and indirect effects of “AI Perception” and “Expectancy” on clinicians' Intention to use the technology when mediated by “Perceived Risk”. Results The findings indicate a significant negative relationship concerning the direct impact of AI's perception on BUC Risk (ß = −0.23, p < 0.001). Similarly, Expectancy had a significant negative effect on Risk (ß = −0.49, p < 0.001). We also noted a significant negative impact of Risk on the Intent to use BUC (ß = −0.34, p < 0.001). Regarding the indirect effect of Expectancy on the Intent to Use BUC, the findings show a significant positive impact mediated by Risk (ß = 0.17, p = 0.004). The study noted a significant positive and indirect effect of AI Perception on the Intent to Use BUC when mediated by risk (ß = 0.08, p = 0.027). Overall, this study demonstrated the influences of expectancy, perceived risk, and perception of AI on clinicians' intent to use BUC (an AI system). AI developers need to emphasize the benefits of AI technology, ensure ease of use (effort expectancy), clarify the system's potential (performance expectancy), and minimize the risk perceptions by improving the overall design. Conclusion Identifying the factors that determine clinicians' intent to use AI-based decision support systems can help improve technology adoption and use in the healthcare domain. Enhanced and safe adoption of AI can uplift the overall care process and help standardize clinical decisions and procedures. An improved AI adoption in healthcare will help clinicians share their everyday clinical workload and make critical decisions." @default.
- W4308554392 created "2022-11-12" @default.
- W4308554392 creator A5002116815 @default.
- W4308554392 date "2022-08-16" @default.
- W4308554392 modified "2023-10-01" @default.
- W4308554392 title "Factors influencing clinicians' willingness to use an AI-based clinical decision support system" @default.
- W4308554392 cites W1752577401 @default.
- W4308554392 cites W1986221133 @default.
- W4308554392 cites W1988050849 @default.
- W4308554392 cites W1990290172 @default.
- W4308554392 cites W2037846862 @default.
- W4308554392 cites W2038001094 @default.
- W4308554392 cites W2066004246 @default.
- W4308554392 cites W2108750986 @default.
- W4308554392 cites W2141619730 @default.
- W4308554392 cites W2162437324 @default.
- W4308554392 cites W2168569455 @default.
- W4308554392 cites W2168808298 @default.
- W4308554392 cites W2173765169 @default.
- W4308554392 cites W2209837817 @default.
- W4308554392 cites W2287953354 @default.
- W4308554392 cites W2403963682 @default.
- W4308554392 cites W2563505833 @default.
- W4308554392 cites W2577043885 @default.
- W4308554392 cites W2581082771 @default.
- W4308554392 cites W2593031450 @default.
- W4308554392 cites W2610332124 @default.
- W4308554392 cites W2622458265 @default.
- W4308554392 cites W2741788848 @default.
- W4308554392 cites W2771573180 @default.
- W4308554392 cites W2802933522 @default.
- W4308554392 cites W2915444077 @default.
- W4308554392 cites W2934302500 @default.
- W4308554392 cites W2947308709 @default.
- W4308554392 cites W2953532875 @default.
- W4308554392 cites W2957144896 @default.
- W4308554392 cites W2981731882 @default.
- W4308554392 cites W2986485804 @default.
- W4308554392 cites W2997428643 @default.
- W4308554392 cites W2999902439 @default.
- W4308554392 cites W3000239480 @default.
- W4308554392 cites W3011770729 @default.
- W4308554392 cites W3044430020 @default.
- W4308554392 cites W3044626901 @default.
- W4308554392 cites W3125347269 @default.
- W4308554392 cites W3125976894 @default.
- W4308554392 cites W3127605199 @default.
- W4308554392 cites W3137091226 @default.
- W4308554392 cites W3213413147 @default.
- W4308554392 cites W4235678817 @default.
- W4308554392 cites W4283257876 @default.
- W4308554392 doi "https://doi.org/10.3389/fdgth.2022.920662" @default.
- W4308554392 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36339516" @default.
- W4308554392 hasPublicationYear "2022" @default.
- W4308554392 type Work @default.
- W4308554392 citedByCount "6" @default.
- W4308554392 countsByYear W43085543922022 @default.
- W4308554392 countsByYear W43085543922023 @default.
- W4308554392 crossrefType "journal-article" @default.
- W4308554392 hasAuthorship W4308554392A5002116815 @default.
- W4308554392 hasBestOaLocation W43085543921 @default.
- W4308554392 hasConcept C107327155 @default.
- W4308554392 hasConcept C111919701 @default.
- W4308554392 hasConcept C119857082 @default.
- W4308554392 hasConcept C133925201 @default.
- W4308554392 hasConcept C154945302 @default.
- W4308554392 hasConcept C15744967 @default.
- W4308554392 hasConcept C163355716 @default.
- W4308554392 hasConcept C169760540 @default.
- W4308554392 hasConcept C177212765 @default.
- W4308554392 hasConcept C188353592 @default.
- W4308554392 hasConcept C26760741 @default.
- W4308554392 hasConcept C2776836400 @default.
- W4308554392 hasConcept C2908647359 @default.
- W4308554392 hasConcept C41008148 @default.
- W4308554392 hasConcept C63527458 @default.
- W4308554392 hasConcept C71104824 @default.
- W4308554392 hasConcept C71924100 @default.
- W4308554392 hasConcept C77088390 @default.
- W4308554392 hasConcept C77805123 @default.
- W4308554392 hasConcept C99454951 @default.
- W4308554392 hasConceptScore W4308554392C107327155 @default.
- W4308554392 hasConceptScore W4308554392C111919701 @default.
- W4308554392 hasConceptScore W4308554392C119857082 @default.
- W4308554392 hasConceptScore W4308554392C133925201 @default.
- W4308554392 hasConceptScore W4308554392C154945302 @default.
- W4308554392 hasConceptScore W4308554392C15744967 @default.
- W4308554392 hasConceptScore W4308554392C163355716 @default.
- W4308554392 hasConceptScore W4308554392C169760540 @default.
- W4308554392 hasConceptScore W4308554392C177212765 @default.
- W4308554392 hasConceptScore W4308554392C188353592 @default.
- W4308554392 hasConceptScore W4308554392C26760741 @default.
- W4308554392 hasConceptScore W4308554392C2776836400 @default.
- W4308554392 hasConceptScore W4308554392C2908647359 @default.
- W4308554392 hasConceptScore W4308554392C41008148 @default.
- W4308554392 hasConceptScore W4308554392C63527458 @default.
- W4308554392 hasConceptScore W4308554392C71104824 @default.
- W4308554392 hasConceptScore W4308554392C71924100 @default.
- W4308554392 hasConceptScore W4308554392C77088390 @default.
- W4308554392 hasConceptScore W4308554392C77805123 @default.