Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308554569> ?p ?o ?g. }
- W4308554569 endingPage "320" @default.
- W4308554569 startingPage "309" @default.
- W4308554569 abstract "To compare the application value of different machine learning (ML) algorithms for diabetes risk prediction.This is a 3-year retrospective cohort study with a total of 3,687 participants being included in the data analysis. Modeling variable screening and predictive model building were carried out using logistic regression (LR) analysis and 10-fold cross-validation, respectively. In total, six different ML algorithms, including random forests, light gradient boosting machine, extreme gradient boosting, adaptive boosting (AdaBoost), multi-layer perceptrons and gaussian naive bayes were used for model construction. Model performance was mainly evaluated by the area under the receiver operating characteristic curve. The best performing ML model was selected for comparison with the traditional LR model and visualized using Shapley additive explanations.A total of eight risk factors most associated with the development of diabetes were identified by univariate and multivariate LR analysis, and they were visualized in the form of a nomogram. Among the six different ML models, the random forests model had the best predictive performance. After 10-fold cross-validation, its optimal model has an area under the receiver operating characteristic value of 0.855 (95% confidence interval [CI] 0.823-0.886) in the training set and 0.835 (95% CI 0.779-0.892) in the test set. In the traditional LR model, its area under the receiver operating characteristic value is 0.840 (95% CI 0.814-0.866) in the training set and 0.834 (95% CI 0.785-0.884) in the test set.In the real-world epidemiological research, the combination of traditional variable screening and ML algorithm to construct a diabetes risk prediction model has satisfactory clinical application value." @default.
- W4308554569 created "2022-11-12" @default.
- W4308554569 creator A5006259922 @default.
- W4308554569 creator A5012974470 @default.
- W4308554569 creator A5015208505 @default.
- W4308554569 creator A5030145659 @default.
- W4308554569 creator A5052569173 @default.
- W4308554569 creator A5067839287 @default.
- W4308554569 creator A5074014514 @default.
- W4308554569 creator A5078712054 @default.
- W4308554569 creator A5079609871 @default.
- W4308554569 date "2022-11-07" @default.
- W4308554569 modified "2023-10-12" @default.
- W4308554569 title "Value of machine learning algorithms for predicting diabetes risk: A subset analysis from a real‐world retrospective cohort study" @default.
- W4308554569 cites W1596201720 @default.
- W4308554569 cites W1602160603 @default.
- W4308554569 cites W1825925264 @default.
- W4308554569 cites W1971967573 @default.
- W4308554569 cites W1981976602 @default.
- W4308554569 cites W2020502126 @default.
- W4308554569 cites W2063804661 @default.
- W4308554569 cites W2069388901 @default.
- W4308554569 cites W2104960492 @default.
- W4308554569 cites W2105981176 @default.
- W4308554569 cites W2111547563 @default.
- W4308554569 cites W2123504579 @default.
- W4308554569 cites W2123570456 @default.
- W4308554569 cites W2145277190 @default.
- W4308554569 cites W2150577353 @default.
- W4308554569 cites W2153505392 @default.
- W4308554569 cites W2200122354 @default.
- W4308554569 cites W2247462025 @default.
- W4308554569 cites W2323525554 @default.
- W4308554569 cites W2341665039 @default.
- W4308554569 cites W2605253636 @default.
- W4308554569 cites W2664267452 @default.
- W4308554569 cites W2761529114 @default.
- W4308554569 cites W2768407518 @default.
- W4308554569 cites W2889815395 @default.
- W4308554569 cites W2906295032 @default.
- W4308554569 cites W2911964244 @default.
- W4308554569 cites W2913997948 @default.
- W4308554569 cites W2938809977 @default.
- W4308554569 cites W2964147226 @default.
- W4308554569 cites W2981311951 @default.
- W4308554569 cites W2985452234 @default.
- W4308554569 cites W2988087638 @default.
- W4308554569 cites W3011484826 @default.
- W4308554569 cites W3011491737 @default.
- W4308554569 cites W3012343632 @default.
- W4308554569 cites W3131409360 @default.
- W4308554569 cites W3159068118 @default.
- W4308554569 cites W3159514218 @default.
- W4308554569 cites W3204536821 @default.
- W4308554569 cites W3211294205 @default.
- W4308554569 cites W3215470728 @default.
- W4308554569 cites W4200026682 @default.
- W4308554569 cites W4200533463 @default.
- W4308554569 cites W4205434957 @default.
- W4308554569 doi "https://doi.org/10.1111/jdi.13937" @default.
- W4308554569 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36345236" @default.
- W4308554569 hasPublicationYear "2022" @default.
- W4308554569 type Work @default.
- W4308554569 citedByCount "0" @default.
- W4308554569 crossrefType "journal-article" @default.
- W4308554569 hasAuthorship W4308554569A5006259922 @default.
- W4308554569 hasAuthorship W4308554569A5012974470 @default.
- W4308554569 hasAuthorship W4308554569A5015208505 @default.
- W4308554569 hasAuthorship W4308554569A5030145659 @default.
- W4308554569 hasAuthorship W4308554569A5052569173 @default.
- W4308554569 hasAuthorship W4308554569A5067839287 @default.
- W4308554569 hasAuthorship W4308554569A5074014514 @default.
- W4308554569 hasAuthorship W4308554569A5078712054 @default.
- W4308554569 hasAuthorship W4308554569A5079609871 @default.
- W4308554569 hasBestOaLocation W43085545691 @default.
- W4308554569 hasConcept C105795698 @default.
- W4308554569 hasConcept C11413529 @default.
- W4308554569 hasConcept C119857082 @default.
- W4308554569 hasConcept C12267149 @default.
- W4308554569 hasConcept C126322002 @default.
- W4308554569 hasConcept C141404830 @default.
- W4308554569 hasConcept C151956035 @default.
- W4308554569 hasConcept C154945302 @default.
- W4308554569 hasConcept C161584116 @default.
- W4308554569 hasConcept C169258074 @default.
- W4308554569 hasConcept C169903167 @default.
- W4308554569 hasConcept C179717631 @default.
- W4308554569 hasConcept C199163554 @default.
- W4308554569 hasConcept C33923547 @default.
- W4308554569 hasConcept C34626388 @default.
- W4308554569 hasConcept C41008148 @default.
- W4308554569 hasConcept C44249647 @default.
- W4308554569 hasConcept C46686674 @default.
- W4308554569 hasConcept C50644808 @default.
- W4308554569 hasConcept C52001869 @default.
- W4308554569 hasConcept C58471807 @default.
- W4308554569 hasConcept C70153297 @default.
- W4308554569 hasConcept C71924100 @default.